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Abstract— This paper focuses on the determining the position 

of a target by measuring the time difference of arrival (TDOA) 

from a set of receivers whose positions are known. In the first 

step, weighted least squares (WLS) based optimization function 

is proposed to locate the target. In the second step, the TDOA 

target localization problem based on least squares (LS) is 

formulated as an optimization problem, with a highly nonlinear 

and multimodal objective function. There are several algorithms 

to estimate the position of a target. In this paper, we proposed a 

hybrid Genetic algorithm (GA) that combines the global search 

and local search abilities in an effective way in order to improve 

the performance and the solution accuracy. Gradient based local 

search algorithms such as the Newton-Raphson and Gauss-

Newton are the most common methods used for hybridization. 

The paper investigates the performance of the hybrid genetic 

algorithm in modelling a TDOA positioning problem using a 

different local search optimization methods. The simulation 

results illustrate the performance comparison of these different 

optimization algorithms. 

 

Index Terms— Localization, Optimization, Least Squares, 

Time Difference of Arrival, Wireless Sensor Networks.  

 

I. INTRODUCTION 

The problem of finding the unknown location of a target 

based on TDOA measurements has been one of the essential 

problems in many applications such as telecommunications, 

mobile communications, environmental monitoring, wireless 

sensor networks (WSNs), and many others [1-2].  

Range measurements can be obtained from different 

techniques such as the time of arrival (TOA), the time 

difference of arrival, the received signal strength (RSS), or the 

angle of arrival (AOA), depending on the available hardware 

to localize the target using geometric approaches. The focus 

of the present paper is a target localization problem based on 

the TDOA measurements due to its simplicity and efficiency.  

The target location can be estimated based on the least 

squares and the maximum likelihood (ML) as a powerful 

methods which can be employed successfully in a practical 

applications. Hence, the localization problem can be 

formulated as an optimization problem known as least squares 
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that minimizes the sum of squared residuals between the 

estimated and the measured distances. The LS estimator can 

be divided into two classes: nonlinear least squares (NLS) and 

linear least squares (LLS) to estimate the target position. In 

this work, the NLS estimator is utilized to solve the problem 

of the target localization based on the TDOA measurements. 

However, the objective function of the NLS estimator of the 

presented localization problem is a highly nonlinear and 

multimodal. It is difficult to obtain its global optimal solution 

with a classical approach in which the convergence of these 

algorithms mainly depends on the selection of initial point and 

may not always converge to the global optimal solution. 

Therefore, in order to overcome this difficulty in the process 

of the optimization the Genetic Algorithm is hybridized with a 

gradient based local search methods. The GA has powerful 

global searching ability, which provides accurate and robust 

numerical results. The proposed hybrid GA algorithm acts in 

two phases in the process of the optimization. During the first 

phase, the GA explores the search space with the aim to find 

an initial global optimal solution, then, during the second 

phase, an initial solution from the first phase is improved 

using the gradient based local search methods.  

The target location is usually obtained by the linear 

estimator as algebraic closed-form solution, however in the 

case of the hybrid GA we avoid the selection of initial 

solution [3]. The weighted least squares algorithm for 

estimation of the target is presented in this paper due to its 

computational efficiency and the linear closed-form solution 

in the WLS sense [4]. The Cramer-Rao Lower Bound (CRLB) 

of the TDOA measurements from all receivers provides a 

lower bound on the variance of any unbiased estimator [5] and 

it is a very useful tool for evaluating the localization accuracy.  

The paper is organized as follows. The target localization 

problem based on the TDOA measurements from a set of 

receivers whose positions are known is reviewed in Section 2. 

Section 3 describes target localization problem which is 

modeled as a least squares estimation problem with NLS and 

WLS approaches. In Section 4, the hybrid GA algorithm is 

presented. The CRLB is given in Section 5. Section 6 gives 

the simulation results of the proposed hybrid GA against the 

WLS and the GA approaches. Finally, conclusion and future 

work are presented in Section 7. 

II. PROBLEM FORMULATION 

In this section, we present the two-dimensional (2-D) target 

localization problem using TDOA measurements under the 

line-of-sight (LOS) environment. In order to determine the 

Hybrid genetic optimization algorithm for target 

localization using TDOA measurements 
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position of the unknown target, it is assumed that at least three 

receivers, 3N   have to be placed on the known positions 

   , , 1,2,..., ,
T

i i ix y i N x  where  T denotes matrix 

transpose, as shown in Fig. 1. 

 

 
 

Fig. 1.  Geometrical model based on TDOA. 

 

This paper assumes that range difference errors  in  are 

independent Gaussian random variables with zero mean and 

known variance ,2

i  i.e.,  20, i . Without loss of 

generality, we set the first receiver 
1R  to be the reference 

receiver.  

The unknown position of a target is obtained using 

geometrical relations between a target and the receivers 

 2,3,..., .
i

R i N Multiplying the obtained times by the 

velocity of the light yields unknown distances denoted by, 

 ,1ir which can be evaluated by  

 

  ,1 ,1 ,1, 2,..., ,i i ir d n i N    (1) 

 

Where 
,1 1

- .
i i

d d d  Here, distances between the target and the 

receiver pair 1R  and iR can be expressed as follows 
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where   2,
T

x y x is the unknown position of a target. 

Hence, the hyperbola is characterized by the fact that the 

difference, 
1- ,id d between any point on it and the two foci at 

iR  and 
1R , respectively, is constant as shown in Fig. 1. 

In the absence of noise, the geometric model for 

determining the unknown true coordinates of the target E  

using TDOA measurements is given by the intersection of two 

hyperbolas in 2-D, as depicted in Fig. 1.  

In practical environments where noise exist, more than two 

hyperbolas do not intersect at the same point and 

corresponding optimization method is needed to minimize the 

localization error. 

III. LEAST SQUARE METHODS 

In this section, we describe LS methods for a target 

localization based on the TDOA measurements. In the first 

approach, NLS minimizes the objective function  NLSJ x  

which is defined as the sum of squared residuals between the 

estimated and the measured TDOA values, i.e. 
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,

1
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i

J R

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where x is optimization variable and residual  ,es i
R x is given 

by  

 

  , ,1 1,es i i i,R r r x  (4) 

 

where 
,1ir is a measured distance. Thus, the optimal solution 

x̂  can be obtained from (3), which can be written as 

 

  
2R

ˆ arg min .NLSJ



x

x x  (5) 

 

The nonlinear hyperbolic equations can be transformed into a 

set of linear equations through the following process. 

Substituting (2) into (1) results in 

 

 
       

 

2 2 2 2

,1 1 1 ,1,

2,3,..., .

i i i ir x x y y x x y y n

i N

        


(6) 

 

Squaring both sides of (6) and introducing an additional 

variable  
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and after some algebraic manipulation, we can show that 
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In the second approach, the system (8) can be linearized by  
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where the second-order term 
2

,1i
n  is neglected and 

,1 ,1
.

i i i
m d n  



 

Hence, the system (9) is linear and can be written in the 

following matrix form 

 

 , A b m  (10) 

 

in which 
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From (10)-(14) respectively, we define the WLS objective 

function, which can be written as  

 

      .
T

WLSJ θ Aθ - b W Aθ - b  (15) 

 

where is   
1

T
E



W = mm  the weighting matrix. Thus, the 

unconstrained optimization problem can be formulated as 

follows 

 

  
2

min .WLS
R

J
x

θ  (16) 

 

The WLS method provides the algebraic closed-form 

solution ˆ
WLS

x  for target localization using TDOA 

measurements which minimizes the objective function 

 WLSJ θ . It can be shown that ˆ
WLS

x  can be obtained from (16) 

by the following equation [4] 
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1

ˆ .T T

WLS
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x A WA A Wb  (17) 

 

The WLS method is usually chosen in practice due to its 

easy implementation and higher computational efficiency. 

IV. HYBRID GA ALGORITHM 

In this section, the implementation of a hybrid GA 

incorporating effective local search techniques in GA is 

provided in order to improve the convergence properties and 

accuracy of the algorithm, and to reduce the computation time 

[3]. The proposed hybrid method is based on the global search 

GA and gradient based local search methods such as Newton-

Raphson and Gauss-Newton. The framework of the proposed 

hybrid algorithm is depicted in Fig. 2, with the detailed 

description of its components given in the following 

subsections. The overall procedure of the proposed hybrid 

approach is described as follows 

Step 1   Initialize the parameters of the hybrid algorithm. 

Step 2  Randomly generate the GA population over the 

solution space. 

Step 3  Evaluate the fitness of the individuals in the 

population. 

Step 4  Check if the termination criterion is satisfied, 

then go to the Step 8, otherwise proceed with 

algorithm and go the Step 5. 

Step 5   Start the global search GA procedure. 

Step 5.1 Using genetic operators: selection, crossover and 

mutation, the population is evolved towards the 

global optimal solution. 

Step 6 Apply the gradient based local search methods to 

the solutions found by GA in order to improve the 

quality of the solution. 

Step 7   Set the 1k k  and go to Step 3 

Step 8   Output the best solution and end the procedure. 

 

 
 

Fig. 2. Flowchart of hybrid GA algorithm. 

 

 In the following subsections the GA and the gradient based 

local search algorithms are presented, respectively. 

A. Genetic Algorithm 

The genetic algorithm is one of the most powerful 

metaheuristic method based on the evolutionary ideas of 
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natural selection and natural genetics by David Goldberg [6]. 

Introducing the bound-constraints, the optimization problem 

(3) is modified into the following form 

 

  min ,
l h NLSJ
 x

x
x x

 (18) 

 

in which x  is a vector of decision variables, 
l

x  and 
h

x  are 

the lower and upper bounds of x , respectively. 

The GA starts with a randomly generated population of 

pN  individuals, each of which is represented by a 

chromosome. GA uses three basic operators to manipulate the 

genetic composition of a population: selection, crossover, and 

mutation. 

In GA, roulette wheel is the simplest selection approach. 

The selection operator is used to select the individuals 

according to the objective function (3), in which individuals 

with the smaller objective function in the current generation 

are reproduced in the next generation. The selection 

probability 
iP  of the ith chromosome is computed as follows  
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where 
i

F  is the corresponding fitness value. The cumulative 

probability 
iC  of the ith chromosome is obtained as follows 
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Based on a randomly generated nonzero floating-point 

number  0 1r  for each individual, the chromosome is 

selected if  1
1,2, ,,

i i p
r CC i N


    and 

0
0.C   

In order to create new chromosomes for the next generation 

a crossover operator is used. Two random crossover points, 

1c  and 
2c , are chosen from the chromosomes. Then, the 

chromosome parts between crossover points are exchanged 

and two new chromosomes are created as shown in Fig. 3. 

 

 
 

Fig. 3.  Two point crossover. 

 

Finally, the mutation process selects a random variable of a 

random individual and negates the bit value in order to 

introduce new unexplored solutions into the GA population 

and avoid a premature convergence to a local minima. 

The implementation of the genetic operators is repeated 

until the average population fitness converges to a stable 

value, which can be expressed as 
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where   is a small positive real number, in which 
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represents the average fitness value of the entire population in 

kth iteration.  

B. Newton-Raphson optimization method 

The Newton-Raphson method is one of the best-known and 

most powerful methods for the solution of nonlinear 

problems. This method requires the calculation of the gradient 

of the objective function and the Hessian matrix, in each 

iteration, which are expressed as follows 
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Using the Taylor series expansion, the second-order 

approximation of the objective function  NLSJ x x  is 

expressed as 

 

 

       

 21
.

2

T

NLS NLS NLS

T

NLS

J J J

J

        

   

x x x x x x

x x x



 (25) 

 

Then, the step size is obtained from the optimality condition 

of (25) as follows 
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Iterative update rule of the Newton-Raphson method in the 

(k+1)th iteration is given as 

 
     1 k
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where  
 k

  is    in the kth iteration. 

A stopping criteria for the NR method is to check if a norm 
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NLSJ   x  (28) 

 

of the gradient of the objective function  NLSJ x  is less or 

equal than sufficiently small positive constant  . 

The Newton-Raphson method has quadratic convergence, 

but may fail to converge to an optimal solution if the Hessian 

matrix is not positive definite. Therefore, to overcome this 

problem, the Gauss-Newton method, is applied and 

represented in the next subsection. 

C. Gauss-Newton method  

The Gauss-Newton method is an approximation of the 

Newton-Raphson method [7], in which the calculation of the 

second derivatives of the objective function  NLSJ x , is not 

required, and is computationally less expensive in each 

iteration. 
The iterative update rule of the GN method is denoted by 
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where 
  k

e x is a residual vector and 
   k

NLSJJ x  is the 

Jacobian matrix evaluated at  k
x , which can be expressed as  
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The iteration procedure is terminated, when the norm of the 

gradient of the objective function  NLSJ x becomes less or 

equal than sufficiently small positive constant , according to 

(28). 

V. CRAMER-RAO LOWER BOUND 

The Cramer-Rao Lower Bound of the TDOA 

measurements provides a lower bound on the covariance of 

any unbiased estimator x̂  of x , and can be used as a 

benchmark for performance comparison. Thus, the 

relationship between the CRLB and the variance can be 

expressed as 
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where  E  is the expectation operator and  I x is the Fisher 

information matrix (FIM) given by  
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The probability density function  f r x  can be defined as 
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where C  is covariance matrix is given as 
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After performing differentiation on the natural logarithm of 

(33) with respect to x , the FIM can be obtained as 
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 where  d x the true distance vector.  

VI. SIMULATION RESULTS 

In this section, numerical simulations have been conducted 

to evaluate the performance of the hybrid GA-NR and hybrid 

GA-GN methods by comparing with the GA and the closed-

form WLS approaches. The simulation environment is 

represented by a set of five receivers with known coordinates 

 340,440
T

m,  1120,240
T

m,  670,1310
T

m,  1380,1250
T

m 

and  1520,700
T

m, while the target is located at  940,850
T

m. 

The localization performance is evaluated in terms of root 

mean square error (RMSE), which is expressed as 
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where 500N   is a number of Monte Carlo simulation 

samples, and x  and  ˆ nx  are the true and estimated positions 

of the target, respectively.  

To evaluate the performance of the considered localization 

algorithms the cumulative distribution functions (CDFs) of 

the GA, hybrid GA-NR, hybrid GA-GN and WLS localization 

errors are observed with different levels of signal-to-noise 

ratio (SNR), SNR = 20 dB and SNR = 40dB, respectively. 



 

The CDFs of localization error using the proposed 

algorithms are illustrated in Fig.4. for SNR level set to 20 dB. 
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Fig 4. CDFs of the localization error for SNR = 20 dB. 

 

The results presented in Fig.4 show that the hybrid GA-NR 

estimator has a superior performance in comparison to the 

other estimators. The proposed hybrid GA method 

incorporating NR local search procedure performs very close 

to the one using the GN local search method. This is because 

the local search estimators are initialized with potentially 

good solution provided by the GA. 

In Fig. 5, the CDFs of target localization error of the GA, 

hybrid GA-GN, hybrid GA-NR and WLS estimators are 

compared, when SNR is set to 40 dB. 
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Fig 5. CDFs of the localization error for SNR = 40 dB. 

 

From Fig. 5, it is observed that in the case when the SNR is 

larger the CDFs of both hybrid estimators have similar 

performance and outperform the both GA and WLS 

estimators.  

Comparing the numerical results from Fig. 4 and Fig. 5, it 

can be observed that the higher level of SNR leads to 

significantly improved performance. 

Finally, the impact of SNR on the estimation performance 

is analyzed for the considered estimators and compared to the 

derived CRLB, as depicted in Fig. 6. 
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Fig 6. Comparison of RMSE versus SNR levels. 

 

It is evident from Fig. 6 that all considered estimators 

except WLS are able to approach the CRLB, for wide range of 

SNR. As the SNR increases the proposed hybrid estimators 

achieve considerably better performance. Moreover, we see 

that there is no obvious difference between the performances 

of the proposed hybrid methods, which aligns with our 

pervious analyzes. 

VII. CONCLUSION 

In this paper the localization model using TDOA 

measurements has been proposed to locate the unknown 

position of a target. The hybrid GA is developed to solve 

highly nonlinear and multimodal localization problem. 

Simulation results show that the proposed hybrid GA method 

gives significantly more accurate results than the GA and 

WLS approaches. The results also showed that our hybrid 

methods accelerate the convergence speed and improve the 

performance of GA. Future work will focus on the application 

of the proposed hybrid GA on the optimal receivers placement 

in the WSNs based on the TDOA measurements. 
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