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Abstract - The constant development of communication 

networks imposes big challenges when providing necessary 

performance and keeping costs low. Successful network and 

device design rely on testing tools which are capable of 

simulating real network conditions. Normally, these tools 

utilize various commonly used IP traffic models in order to 

generate IP traffic. However, majority of those IP traffic 

models are useful for specific traffic scenarios and fail to 

adequately simulate wide range of different traffic patterns. In 

this paper, we present new IP traffic generator based on 

hidden Markov models (HMM). The important feature of 

hidden Markov models is their ability to automatically adjust 

parameters using Baum-Welch algorithm, which allows us to 

record real IP traffic and dynamically create accurate 

representation of that traffic. We develop application which 

utilizes hidden Markov models that is capable of generating a 

large number of different IP traffic patterns based on 

measurements of live traffic.  

 

Index Terms— Traffic Generation, Traffic Models, Hidden 

Markov Models.  

 

I. INTRODUCTION 

The communication networks are constantly increasing in 

order to cope with demands for lager network infrastructure 

and new services. This growth of communication networks 

requires efficient tools for analyzing and evaluation of their 

performance. Quality of service needs to be of adequate 

level to provide customer satisfaction and cost dictates 

investment’s profitability. The network design must balance 

between quality of service and cost by optimizing 

performance to match real network conditions. Since traffic 

models simulate those network conditions, they are the core 

component of network performance evaluation and they 

need to be very accurate. Different traffic models can be 

used to generate IP traffic with the characteristics suited for 

specific networks and devices. Some of the most widely 

used traffic models are: 

 Poisson distribution model is one of the oldest traffic 

models and it was widely used in traffic scenarios that 

comprise large number of independent traffic streams 

[1].  

 Pareto’s [2] and Weibull’s [3] heavy-tailed 
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distributions are often used to describe self-similar 

network traffic [4]. Heavy-tailed distributions have the 

property of a long-range dependence. 

 In ON-OFF model each input alternates between active 

and idle periods with geometrically distributed 

durations. This model can be used for modelling of 

both system behavior and IP traffic scaling features [5].  

 More complex models which are designed for specific 

traffic types [6, 7]. 

These traffic models are not designed capture the 

characteristics of arbitrary types of traffic loads. In the 

majority of cases, the types of network and traffic determine 

the choice of the traffic model used for analysis. If the 

traffic model is not chosen correctly, the characteristics of 

actual traffic will not be properly represented and that would 

lead to under-estimation or over-estimation of network 

performance. Traffic models should have a manageable 

number of parameters, and parameter estimation should be 

simple. 

In this paper, we propose different traffic modeling 

strategy based on hidden Markov models (HMMs) [8]. The 

HMMs are normally used in speech recognition [9]. Speech 

has temporal structure and can be encoded as a sequence of 

spectral vectors spanning the audio frequency range. Each 

sequence of vectors usually represents one word. For any 

input sequence, HMM will produce occurrence probability 

of that sequence. The speech recognition is done by creating 

a large library of HMMs where parameters of each HMM 

are adjusted to maximize probability of specific word. In 

other words, each HMM represents one word. Then, input 

sequence is put through library of HMMs and each of them 

calculates the likelihood of its corresponding word. The 

word with the highest likelihood is the result of estimation.  

We used HMM as a statistical IP traffic model, where 

input sequences are based of different traffic characteristics, 

similarly as in [8]. We implemented application 

hmm_ip_gen which is capable to record traffic in live 

network, parse results, create input sequences, train HMMs 

and generate output IP traffic. We, then, examined the 

performance of our generator in the case of gaming and 

streaming applications.  

The paper is organized as follows. The principles of 

HMMs and Baum-Welch algorithm [10] are presented in 

Section 2. Sections 3 describes hmm_ip_gen application and 

how HMM is utilized for IP traffic simulation. Section 4 

describes testing environment. In Section 5, we analyze 

results of conducted tests. Finally, Section 6 concludes the 

paper. 

IP Traffic Generator Based on  

Hidden Markov Models 

Hasan Redžović, Junior Member, IEEE, Aleksandra Smiljanić, Member, IEEE, and Milan Bjelica, 

Member, IEEE 

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering, 
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. TEI2.3.1-6



 

II. HIDDEN MARKOV MODEL AND BAUM-WELCH 

ALGORITHM 

The canonical probabilistic models for temporal or 

sequential data is called Markov model. In Markov model, it 

is assumed that future states only depend on the current 

states and not on the events that occurred before it. A hidden 

Markov model (HMM) is a Markov model with underlying 

states that are not observable (hidden). The hidden states can 

only be observed through another set of stochastic processes 

that produce the sequence of observed symbols. In Markov 

models, the state is directly visible to the observer, and, 

therefore, the state transition probabilities are the only 

defined parameters. In a hidden Markov model, the state is 

not directly visible, instead, we can see only output symbol 

(also named observation). Each state has a probability 

distribution over the possible output observations. 

Therefore, the sequence of observations generated by an 

HMM gives some information about the sequence of states.  

In HMM, the states are denoted as Q = {q1, q2,..., qN}, 

where N is the number of states in the model. State 

transition matrix is defined as:  

 

  ( 1) ( ), (q | q ), 1,2,..., 1t t

ij ij j iN N
A a a P t T


        (1) 

 

  We will estimate states based on certain observations 

which are correlated with the states. Let us denote 

observations as V = {v1, v2,..., vM} where M is the number of 

observation values. The observation matrix correlates 

observations with states  

 

  ( ), ( | q ), 1,2,...,t t

jk jk k jN M
B b b P t T


         (2) 

 

An initial state distribution is necessary to run the HMM 

model: 

 

       (t)

1
, (q ), t 1i i iN

P  


               (3) 

 

The initial state distribution defines the likelihood to be in 

each state at the beginning of observation. The matrices π, A 

and B completely define HMM and they are usually written 

as λ = (A, B, π). Observation sequence in time is denoted by: 

 

1 2( , ... )TO             (4) 

  

Using HMM with defined parameters λ, it is possible to 

determine the most likely state sequence that will produce 

the observation sequence (4). In other word, by observing 

the sequence (4), we can determine the most likely sequence 

of states. There are three fundamental problems that can be 

solved using HMMs: 

 Problem 1: given a sequence of observation O and λ = 

(A, B, π), find P(O| λ); 

 Problem 2: given a sequence of observation O and λ = 

(A, B, π), find optimal state sequence; 

 Problem 3: given a sequence of observation O and 

dimensions N and M, find the model λ = (A, B, π) that 

maximizes probability of O. 

Below, we are going to briefly describe efficient 

algorithms for solving mentioned problems.  

A. Solution to Problem 1 

The direct computation of P(O|λ) is very hard and in 

many cases not possible, because it requires 2TNT 

multiplications. The recursive forward algorithm (also called 

α-pass) is more efficient way to find P(O|λ). Let X = (x0, x1, 

..., xT-1) be the state sequence. For t = 0, 1,..., T - 1 and i = 0, 

1,..., N − 1, parameters αt(i) are defined: 

 

0 1( ) ( , ,..., ,x q | )t t t ii P           (5) 

 

The parameter αt(i) is the probability of the partial 

observation sequence up to time t, where the underlying 

Markov process is in state qi at time t. First, initial values are 

computed: 

 

00( ) , 0,1,..., 1i iOi b i N       (6) 

 

For t = 1, 2,..., T − 1 and i = 0, 1,..., N − 1, αt(i) are 

recursively computed: 
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Then, conditional probability P(O| λ) is computed: 

 

1

1

0

( | ) ( )
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
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The forward algorithm requires N2T multiplications which 

is much easier to calculate in comparison to 2NTT 

multiplications required for direct approach. 

B. Solution to Problem 2 

Backward algorithm or β-pass is used for solving problem 

2. The backward algorithm is almost analogous to forward 

algorithm, but, in this case, calculation starts at the end and 

goes toward the beginning of the observation sequence. For 

t = 0, 1,…, T - 1 and i = 0, 1,…, N − 1, we define 

parameters: 

 

1 2 1( ) ( , ... , | )t t t T t ii P o o o x q        (9) 

 

Then, the calculation process is roughly the same as in the 

forward algorithm. First, initial values are defined: 

 

1( ) 1 0,1,..., 1T i i N         (10) 

 

For t = T-2, T-3,…, 0 and i = 0, 1 … N − 1, parameters 

βt(i) are recursively computed: 
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Using forward and backward algorithms, we can calculate 

parameters γt(i) which will be used to find the most likely 



 

state qi at time t. For t = 0, 1,..., T - 1 and i = 0, 1,..., N – 1: 

 

( ) ( | , )t t ii P x q O         (12) 

Parameter αt(i) measures the state probability up to time t 

and βt(i) measures the state probability after time t, and γt(i) 

can be calculated as: 
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It can be shown that the most likely state at time t is the 

state qi for which γt(i) is maximal. 

C. Solution to Problem 3 (Baum-Welch algorithm) 

The values of λ = (A, B, π) can be adjusted to maximize 

probability of some specified observation sequence. First, 

“di-gamma” parameters need to be defined. For t = 0, 1,..., 

T-2 and i, j ∈ {0, 1,…, N-1}: 
 

1( , ) ( , | , )t t i t ji j P x q x q O       (14) 

 

Parameter γt(i, j) is the probability of being in state qi at 

time t and transiting to state qj at time t + 1. The di-gammas 

can be written in terms of α, β, A and B as: 

 

1 1( ) ( )
( , )

( | )
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i j
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One can re-estimate λ = (A, B, π) using di-gamma and 

parameter γt(i) defined in (13). Re-estimated πi values:  

 

0 ( )i i  , i = 0, 1,…, N - 1      (16) 

 

Re-estimated aij values for i, j ∈ {0, 1,…, N-1}: 
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Re-estimated bjk values for j ∈ {0, 1,…, N-1} and k ∈ {0, 

1,…, M-1}: 
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Using re-estimation through iterations, model λ = (A, B, 

π) is optimized to produce used training sequence with the 

highest probability. The described solution of problem 3 is 

also called Baum-Welch algorithm.  

In our case, we used HMMs and Baum-Welch algorithm 

to generate IP traffic. This generation process has three 

basic steps: (i) The training observation sequences are 

created from the recorded IP traffic; (ii) The HMMs are 

trained using Baum-Welch algorithm and measured 

observation sequences; (iii) The trained HMMs then 

generate output sequences which are used to synthesize IP 

traffic based on the observed traffic. 

III. HMM IMPLEMENTATION 

We created traffic generator application named 

hmm_ip_gen which utilizes HMMs described in previous 

section. HMMs are based on two important IP traffic 

features for network performance: 

 Packet length – Ethernet packet can be between 64 B 

and 1500 B long. Packet size determines maximal 

number of packet that can be sand through the link. 

Shorter packets require more processing power of 

networking devices.  

 Packet interarrival time – Packets are commonly 

appearing in bursts, i.e. after the first packet there is a 

large probability to receive the second packet. Also, 

depending on the IP traffic type (video streaming, 

games, VoIP, etc), the statistics of interarrival times 

between packet bursts can vary. Packet interarrival 

time distribution affects the number of packet received 

by network devices and more realistically depict the 

actual network conditions. 

 Application hmm_ip_gen is developed in C programing 

language and it is split in three phases (Fig. 1). In the first 

phase, hmm_ip_gen is recording real IP traffic on dedicated 

interface which is connected with live network. The IP 

traffic is recorded using pcap library and it is parsed into 

two group of training sequences: packet length sequences 

and interarrival time sequences.  

In the second phase, packet length and interarrival time 

sequences are used as training observation sequences for 

HMMs. Before training process starts, HMMs are initialized 

by setting values for matrices A, B and π. If some of the IP 

traffic characteristics are known, it is recommended to 

provide reasonable approximations for the matrix values. 

Otherwise, hmm_ip_gen will set initially aij ≈ 1/N, bjk ≈ 1/M, 

πi ≈ 1/N. Custom initial matrix values can increase HMM 

accuracy. It is important that the values of each matrix are 

not absolutely uniform, because the training process will 

fail. The HMM training procedure has the following steps: 

 Packet length sequence or interarrival time sequence 

are used as training observation sequence O (4); 

 Based on training observation sequence and initial 

values for matrices A, B and π, the parameters αt(i) and 

βt(i) are calculated using (7) and (11), respectively; 

  The probability P(O| λ) is computed using (8); 

 When αt(i), βt(i) and P(O|λ) are calculated, the 

parametars γt(i) and γt(i, j) can be computed using (13) 

and (16), respectively; 

 Then, the parametes γt(i) and γt(i,j) are used to 

reestimate values of the matrices π, A and B using (16), 

(17) and (18), respectively; 

 The new probability P(O|λ) is computed using (8) and 



 

compared to the old probability P(O|λ). If new 

probability is higher, then, the new cycle of the HMM 

traning procedure begins, where new re-estimated 

values of matrices π, A and B are used. Otherwise, new 

re-estimated values are rejected and the HMM training 

procedure is finished.  
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Fig. 1. Traffic generator application hmm_ip_gen architecture. 
 

In the third phase, output sequences (packet length and 

interarrival time sequences) are generated using trained 

HMMs. The sequence generation process is based on the 

algorithm for selecting an element with the probability of its 

occurrence. Probabilities of the elements are stored in an 

array. The algorithm is presented by the pseudo code given 

in Fig. 2. 

 

initialize and set index to zero; 

initialize and set cumulative probability to zero; 

create random uniform number in the range [0,1]; 

 

while cumulative probability is less than number: 

    add next given probability of an array to  

    cumulative probability; 

    increment index by 1; 

return index; 

 
Fig. 2. The algorithm for selecting element. 

 

 Using the described algorithm, the output sequence is 

generated through the following steps: 

 A state is selected from matrix π which represents 

initial hidden state with its calculated probability; 

 An output observation is selected from matrix B which 

represents initial output observation with its probability 

for a given state; 

 Then, the next hidden state is selected from matrix A, 

and, the next output observation is selected from 

matrix B; 

 The previous step is repeated until the entire sequence 

is generated. 

Output sequences define packets lengths and interarrival 

times between packet transmissions. The Ethernet packets 

were sent using Linux raw socket.  

IV. TESTING ENVIRONMENT AND EXPERIMENTAL 

EVALUATION 

The testing environment comprises two machines M1 and 

M2, which are connected as shown in Fig. 3. Machine M1 is 

using hmm_ip_gen to record IP traffic from the network, 

train HMMs and generate IP traffic towards machine M2. 

The generated IP traffic should have approximately the 

same packet length and interarrival time distribution as 

recorded IP traffic form the network. We used three points 

in our testing environment to measure packet size and time 

distribution. These measurement points are labeled in Fig. 3 

as A, B and C. The packet length and interarrival time 

distribution were measured at point A for the recorded IP 

traffic, at point B for output sequences (generated by 

HMMs) and at point C for the IP traffic recorded on 

machine M2. The pcap library was used on machines M1 

and M2 for measuring IP traffic at points A and C 

respectively. Generated IP traffic was measured at point B 

within hmm_ip_gen application, before it was sent through 

raw socket towards machine M2. Tests are conducted for 

two types of IP traffic: video streaming and online 

multiplayer games.  

In the first case, machine M1 was receiving video stream 

form the network, while hmm_ip_gen was recording IP 

traffic. And in the second case, machine M1 was having 

game session for simple browser online multiplayer game 

agar.io, while hmm_ip_gen was recording IP traffic.  
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Fig. 3  Testing environment. 

 

The packet length distribution of video streaming in all 

three points are shown on Fig. 4. The results clearly 

demonstrate that the packet length distribution in all three 

points are approximately the same. This means that the 

machine M2 (point C) is receiving the IP traffic generated 

by machine M1 which has approximately the same statistics 

as the traffic on the network (point A).  

Also, Fig. 4 shows two dominant packet lengths: 25 % of 

packets are short (around 64 Bytes) and 20 % of packets are 



 

long (around 1500 Bytes). The long packets come from 

video streaming and TCP packets which carry video data. 

The short packets come from many different sources:  TCP 

ACK (Acknowledgement), routing protocols, DHCP, ARP, 

etc.  

 

 
 

Fig. 4  Packet size distribution for video streaming. 

 

 
 
Fig. 5  Time distribution for video streaming. 

 

 
 
Fig. 6  Packet size distribution for online multiplayer game agar.io. 

 

The interarrival time distribution for video streaming is 

shown in Fig. 5. Recorded network IP traffic (point A) and 

generated output sequences (point B) have very close 

interarrival time distributions. However, recorded IP traffic 

on machine M2 (point C) has time distribution which 

slightly differs when compared to point A and point B 

measurements. This difference in time distributions is due to 

the limitation of Linux socket as it is difficult to achieve 

precise transmission between two successive packets for 

short interarrival times (around 100 ns). Still, the overall 

interarrival time distribution at point C is quite similar to the 

measurements at points A and B. It is worth noting that 

accuracy of time distribution is mainly limited by software 

and hardware used to generate IP traffic and not by HMMs. 

Time distribution at point C can be improved by optimizing 

Linux socket or by choosing another more accurate method 

for sending packets. 

 

 
 

Fig. 7  Time distribution for online multiplayer game agar.io. 
 

The packet length distribution of agar.io is shown in 

Fig. 6. Unlike in video streaming, the traffic of online 

multiplayer games does not include long packets. The 

agar.io server require frequent updates of all players in 

session for calculating players positions and other related 

parameters. Then, server sends update to each player and 

thus providing synchronization between players so they can 

interact with each other. This communication between 

server and player require IP packets with relatively small 

lengths.  This IP traffic between server and machine M1 is 

shown in Fig. 6 has peak of 23% for packet lengths around 

73 Bytes. In Fig. 6, packet length distribution at all three 

points is approximately the same as in the case of video 

streaming. The interarrival time distribution of agar.io is 

shown on Fig. 7 and it has similar characteristics as 

interarrival time distribution of video streaming. 

V. CONCLUSION 

We presented basic principles of HMM and how it can be 

used for implementing the IP traffic generator. Our traffic 

generator can learn the statistics of the network traffic, and 

later use created HMM models for network testing and 

performance evaluation. The presented results demonstrate 

the hmm_ip_gen capability to easily and very accurately 

mimic wide range of different IP traffic patterns. The 

hmm_ip_gen flexibility and ability to store large number of 

trained HMMs can be suitable for testing and evaluation of 

various networks and network devices. Application 

hmm_ip_gen can be improved in future by adding different 



 

I/O methods for receiving and sending packets which will 

enhance the accuracy of the interarrival time distribution. 

Also, trained HMMs in hmm_ip_gen can be adjusted to not 

only generate output sequence but also to recognize 

different IP traffic patterns in the networks.  
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