


Abstract—In this paper, we investigated a way of computing

data, encrypted using Paillier’s homomorphic encryption scheme

and stored in Cassandra database. For computing data, we used

Cassandra’s User-Defined-Functions (UDF) and User-Defined-

Aggregates (UDA). Sensitive data, such as customers’ consumed

energy was used as an example, where aggregated energy

consumption, over a period time, was computed using UDF and

UDA. Cassandra database was deployed on Microsoft Azure

platform, where six different clusters were set, consisting of two,

four and six nodes.

Index Terms—Paillier encryption scheme; Big data;

Cassandra database.

I. INTRODUCTION

One of big concerns today is who can see our information,

who has access to it, and how that information is handled.

More data are moved to clouds every day, which raises certain

questions about our privacy. One way of securing our

information and data is cryptography. Using cryptography,

information becomes illegible and inapplicable, thus making it

unavailable for processing. Homomorphic encryption enables

certain mathematical operations to be applied on encrypted

information, without knowledge of its keys. One of

homomorphic encryption usages is electronic voting, in order

to preserve privacy in electronic voting [1]. In [2],

homomorphic encryption was used in medical purposes,

where patient’s name, diastolic and systolic pressure numbers

were encrypted using homomorphic encryption.

Homomorphic encryption may be applied in finance sector,

where “functions computed on the data as well as the data

itself should remain private” [2]. Combining storing

information on clouds, and homomorphic encryption,

sensitive information can be stored in one of NoSQL

databases, and still enable mathematical operations to be

executed over encrypted data. In this paper, we present a way

of handling encrypted data with Paillier’s homomorphic

encryption scheme, in Cassandra NoSQL database.

Jelena Stankovski is with the Faculty of Technical Sciences, University of

Novi Sad, 6 Trg Dositeja Obradovića, 21000 Novi Sad, Serbia (e-mail:

jelena.stankovski@ uns.ac.rs).
Aleksandar Erdeljan is with the Faculty of Technical Sciences, University

of Novi Sad, 6 Trg Dositeja Obradovića, 21000 Novi Sad, Serbia (e-mail:

ftn_erdeljan@ uns.ac.rs).
Ivana Kovačević is with the Faculty of Technical Sciences, University of

Novi Sad, 6 Trg Dositeja Obradovića, 21000 Novi Sad, Serbia (e-mail:

ivana.kovacevic@ uns.ac.rs).
Nikola Dalčeković is with the Faculty of Technical Sciences, University of

Novi Sad, 6 Trg Dositeja Obradovića, 21000 Novi Sad, Serbia (e-mail:

nikola.dalcekovic@ uns.ac.rs)

The remainder of this paper is organized as follows. Section

II reviews homomorphic encryption and Paillier

homomorphic encryption scheme in details. Section III gives

an overview on Big Data and NoSQL databases,

concentrating on User-Defined-Functions and User-Defined-

Aggregates in Cassandra database. Section IV describes

conducted tests and presents tests’ results. Section V

summarizes our testing and gives a scope for future work.

II. SECURITY

A. Cryptography

Cryptography transforms readable data into non-readable

data, thus aggravating easy data reads. As stated in [3],

cryptography is the science of using mathematics for making

plain text information (P) into an unreadable cipher text (C)

format called encryption and reconverting that cipher text

back to plain text called as decryption with the set of

cryptographic algorithms (E) using encryption keys (k1 and

k2) and the decryption algorithm (D) that reverses and

produces the original plain text back from the cipher text. This

can be interpreted as cipher text C = E {P, k1} and plain text

P = D {C, k2}.

B. Homomorphic encryption

Certain use cases require mathematical operations over

encrypted data. One of these use cases is described in [1],

where addition needs to be applied on encrypted data. To be

able to perform mathematical operations over encrypted data,

encryption algorithms need to have homomorphic property.

By definition [4]: Given two groups (G, ◊) and (H, ), a

group homomorphism from (G, ◊) to (H, ) is a function f:

G → H such that for all g and g’ in G it holds that

.)'()()'(gfgfggf  (1)

One way to classify homomorphic encryption is by

operation which scheme supports. In partially homomorphic

encryption, only one operation can be performed, addition or

multiplication. A more advanced scheme is somewhat

homomorphic encryption, which supports more than one

operation, but for a limited number of addition and

multiplication operations. The most advanced scheme is fully

homomorphic encryption, which can compute any function

[2].

Another classification of homomorphic encryption differs

additive and multiplicative homomorphic encryption. When

addition can be performed on encrypted text and decrypting

Computing Data Encrypted by Paillier

Encryption Scheme Using Cassandra Database

Jelena Stankovski, Aleksandar Erdeljan, Ivana Kovačević and Nikola Dalčeković

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. RTI2.3.1-5

cipher text matches the original sum, homomorphic

encryption is called additive [5]. As shown below, addition of

plain text corresponds to multiplication of cipher text

)()()(yEncxEncyxEnc  (2)

.)()(
11





l

i

i

l

i

i mEncmEnc (3)

When multiplication can be performed on encrypted text

and decrypting cipher text matches the original multiplication,

homomorphic encryption is called multiplicative [5], which

corresponds to

)()()(yEncxEncyxEnc  (4)

.)()(
11





l

i

i

l

i

i mEncmEnc (5)

Some of homomorphic encryptions are: Goldwasser-Micali,

Boneh-Goh-Nissim, Paillier, El-Gamal [4], which are partially

homomorphic encryptions, and Gentry [6], which is fully

homomorphic encryption.

C. Paillier homomorphic encryption

In this paper, focus will be on Paillier’s homomorphic

encryption scheme, due to its additive characteristic. This

encryption scheme has additive homomorphic encryption

property and is an asymmetric algorithm. Scheme was

proposed by Pascal Paillier in 1999 [7]. Paillier encryption

scheme consists of following steps [4]:

- Key generation: since Paillier encryption is an

asymmetric algorithm, public and private key needs to

be generated. First step of key generation is choosing

two prime numbers p and q, so that greatest common

divisor is 1

 .1))1)(1(,gcd( qppq (6)

Then n and λ need to be computed, where pqn  ,

and λ is the least common multiple of)1(p and

)1(q . Next step includes selecting random integer g,

where *
2n

g  and compute µ as

)(mod)))(mod((12 nngL   (7)

where L is defined as

 .
1

)(
n

u
uL


 (8)

By computing n, λ, and µ and selecting g, keys are

formed as Public (n, g) and Private (λ, µ).

- Encryption: to compute cipher text, random r, where
*

n
r  , needs to be generated, and then cipher text

can be computed as

).(mod 2nrgc nm (9)

- Decryption: to decrypt cipher text, formula below is

used:

).(mod))(mod(2 nncLm  (10)

- Homomorphic properties: as stated before, Paillier

encryption scheme has additive homomorphic

properties, i.e. multiplication of encrypted data is

equivalent to addition of plain data

)(mod)))(mod(),((21

2

,21 nmmnpkmEpkmED 

(11)

))(mod)((),(),(2

2121
21 nrgrgpkmEpkmE

nmnm


(12)

)(mod)(2

21
21 nrrg nmm 

 (13)

).,(21 pkmmE  (14)

 Implementation of Paillier encryption scheme which

corresponds to described equations and will be used later is

written in Java and located in [8].

III. BIG DATA

One of currently trending topics is Big Data. Considering

Big Data as large amount of data or information is misleading,

Big Data is much more to that. As stated in [9], Big Data can

be described with 5 Vs: velocity, variety, volume, veracity

and value. Volume is a characteristic of Big Data which

describes the size of data, velocity is the high speed of data,

variety indicated heterogeneous data types and sources,

veracity describes consistency and value provides outputs for

gains from large data sets.

Closely related to term Big Data are NoSQL databases.

NoSQL (“no SQL” or “not only SQL”) databases are next

generation databases, as they are being non-relational,

distributed, open-source and horizontally scalable [10]. CAP

theorem applies to NoSQL databases, since these databases

are a distributed management system. Given that,

Consistency, Availability and Partition tolerance cannot be

satisfied all at the time, meaning two out of three

characteristics are chosen to be applied. NoSQL databases

choose availability, partition tolerance in speed instead of

consistency. Relational databases have ACID characteristics,

i.e. Atomicity, Consistency, Isolation and Durability, whereas

BASE characteristics, Basically available, Soft state,

Eventually consistency, apply NoSQL. NoSQL databases are

divided into four major types [11]:

- Key value store: this type of database is schema free and

data is stored as a key-value pair, similarly to maps or

dictionaries. NoSQL databases which are key value

store are Project Voldemort and Redis.

- Column family store: also known as wide column store.

Column family store data model is “sparse, distributed

and a persistent multidimensional sorted map” [12].

Cassandra, HBase and Bigtable are column family

NoSQL databases.

- Graph database: specialized for efficient management of

heavily linked data. Applications which use many

relationships are more suited for graph databases.

Neo4j and GraphDB are graph NoSQL databases.

- Document store: data is organized into documents, where

each document has a special key “ID”, which is unique

and identifies a document explicitly. JSON format is

used for representing data in document store databases.

Some of document store databases are MongoDB and

Riak.

A. Cassandra database

Cassandra is an open source, distributed NoSQL database

management system. By being distributed management

system, Cassandra has data across all here nodes, thus making

Cassandra an available service with no single point of failure

[13]. According to [14], Cassandra is the leading wide column

store database, given its popularity. For writing queries in

Cassandra, Cassandra query language (CQL) is used, as an

alternative to Structured query language (SQL). Key terms in

Cassandra architecture are [15]:

- Node: place where data is stored, it is the basic

infrastructure component of Cassandra. Specific node

is coordinator node, which determines which nodes in

the ring should get the request, based on the cluster

configured snitch.

- Data center: a collection of related nodes. Replication is

set by data center.

- Cluster: is a container for one or more data centers.

To fully understand Cassandra, Cassandra’s data model

should be explained. Keyspace is the container of column

families, which can be analogous to schema in relational

databases. Column family represents an ordered list of

columns, which is analogous to table in relational databases.

Row is a collection of columns and is identified by a key,

which determines which node the data is stored on. Column is

a triplet that contains a name, a value and a timestamp,

making it the smallest increment of data. Super column is a

column whose values are columns [13].

B. User-Defined-Functions and User-Defined-Aggregates

As of Apache Cassandra 2.2, User-Defined-Functions

(UDF) and User-Defined-Aggregates (UDA) are available.

UDF and UDA enable user to build their own scalar

functions, and their own aggregations [16]. The idea behind

UDF and UDA is to transfer computation to server side, thus

avoiding retrieving data and applying aggregation on the

client-side [12]. UDF and UDA are executed on the

coordinator node, meaning all the necessary data for functions

and aggregations need to be retrieved to coordinator node.

Usage of UDF and UDA, as well as CQL syntax for creating

UDF and UDA will be given and interpreted in next section.

IV. CASE STUDY

Since the purpose of UDF and UDA is building custom

functions and aggregations, combining that with Paillier’s

encryption scheme, sensitive data can be stored in Cassandra

and custom aggregations can be applied on that data. For

demonstration, we will use an example of energy

consumption, i.e. how much energy customers spend hourly.

Since the amount of energy consumed is sensitive data, this

data can be encrypted using Paillier’s encryption. In this

paper, we will not discuss how key management is done, or

how the data is sent to the Cassandra cluster. This will be

considered done in most secured and efficient way. Our goal

is to show how UDF and UDA can be used to compute energy

consumption, which is encrypted, for a certain customer, in a

certain period.

Testing scenario that will be described is that every

customer’s energy consumption for the hour is sent to a

certain database, where it is stored, in encrypted form, using

Paillier’s encryption scheme. For data storage, we will use

Cassandra. Also, connected to Cassandra database is a utility,

which needs to have information on how much energy certain

customer has consumed over a given period. For encrypting

consumed energy and decrypting the amount of consumed

energy over time Paillier encryption scheme implementation

is used [8]. When acquiring data from database, utility will

receive aggregated data from Cassandra in encrypted form,

which needs to be decrypted. For storing customers’

consumed energy over time, ‘consumption’ table can be

created as, in keyspace ‘test’:

CREATE KEYSPACE test WITH REPLICATION =

{'class': 'SimpleStrategy',

'replication_factor': 2};

CREATE TABLE consumption (

customer_unique_id uuid,

day date,

ts timestamp,

consumed_energy varint,

PRIMARY KEY (customer_unique_id, ts));

Property ‘customer_unique_id’ represents the

customer’s unique id, ‘day’ represents the day for which the

read was done, ‘ts’ represents the time when the energy

consumption was read, ‘consumed_energy’ represents the

amount of energy consumed for the day. The primary key in

this table is customer’s id and ‘ts’. Since the consumed

energy will be encrypted, varint type is used for storing large

numbers.

To compute amount of consumed energy over a certain

period, UDF and UDA need to be applied. For this purpose,

function ‘multiply’ is created, with arguments ‘next’ and

‘current’. This function returns multiplied values, since the

input data are encrypted and Paillier’s encryption scheme for

encrypted data is equivalent to addition of plain text. Also, an

aggregate ‘multiplyPaillier’ is created, which will be

called for column which needs to be aggregated, i.e. column

‘consumed _energy’. Aggregated value’s size is

increased by each operation, which can result in over 10,000

ciphers. The type of aggregated value is ‘varint’, which

corresponds to ‘BigInteger’ in Java, thus large numbers are

not an issue, given that ‘BigInteger’ range is
VALUEMAXInteger _.2 to VALUEMAXInteger _.2 .

CREATE OR REPLACE FUNCTION

test.multiply(next varint, current

varint)

CALLED ON NULL INPUT

RETURNS varint

LANGUAGE java

AS '

if (next == null)

 return current;

 else

 return next.multiply(current);';

Interpreting creation of UDF:

- UDF can be created using ‘CREATE’ clause, combined

with ‘OR REPLACE’, if the UDF already exists.

- Since the scope of UDF is keyspace, ‘test.’ can be

added, where it represents the keyspace’s name.

- List of arguments can be passed to UDF, where type and

argument name should be provided. In our example,

‘next’ and ‘current’ are parameters with type

‘varint’.

- When ‘CALLED ON NULL INPUT’ is used, UDF will

be called even if the input argument is null. Instead of

this statement, ‘RETURNS NULL ON NULL

INPUT’ can be used, and will return null for null

argument.

- Return type should be set according to specified list of

valid CQL types.

- Available languages to write source code are Java,

Javascript, Groovy, Scala, JRuby and JPython. In our

example, Java language is used.

For creating UDA, next statement is used:

CREATE OR REPLACE AGGREGATE

test.multiplyPaillier(varint) SFUNC

multiply STYPE varint INITCOND null;

Interpreting creation of UDA:

- As in UDF creation, rules for ‘CREATE’ clause apply.

- Unlike UDF, UDA only accepts the list of types as an

input parameter.

- ‘SFUNC’ clause points to UDF, as an accumulator

function.

- STYPE’ clause is the type of the state to be passed to

‘SFUNC’ for accumulation, as well as the return type.

- ’INITCOND’ states the initial value of the state.

To compute consumed energy in one month, next statement

should be executed:

SELECT multiplyPaillier(consumed_energy)

FROM consumption WHERE day<'2016-05-27'

AND day>'2016-04-27' and

customer_unique_id=’ 9c41cebc-a987-11e6-

80f5-76304dec7eb7;

Our testing scenario included computing consumed energy

for a period, for one customer. However, another useful

information may also be how much energy was consumed

over a period, for a larger area, e.g. substation or a region. To

gain such information, ‘WHERE’ clause would have to involve

more customers.

To test this scenario, we have set up Cassandra cluster on

Microsoft Azure, with two, four and six nodes. Each node is a

Standard D2 v2 machine (2 CPU cores, 7GiB Memory, 4x500

IOPS) [17]. Since Cassandra is distributed database, it is very

unlikely to be used as a single node cluster. Each cluster has a

keyspace, table, UDF and UDA set as previously described.

Also, table has 100.000 rows. Testing will be done for a

period of one, two, three, four and five months. To measure

time needed to compute consumed energy over time, ‘tracing

on;’ option is used in Cassandra. When tracing option is

turned on, execution time of every statement is measured, and

shown in µs .

In Figure 1, time needed to compute consumed energy for

one customer, over a certain period is shown.

Figure 1. Time needed for computing consumed energy on Standard D2 v2

machines

Time needed to compute is shown in ms, and the period, for

which the computation is done, is given in months. To

compute encrypted energy consumption over one month for

one customer, with daily energy consumption being stored,

Cassandra needs 623ms, when cluster has two nodes, 788ms

for cluster with four nodes, and 855ms for cluster with six

nodes. As stated earlier, UDF and UDA are executed only on

coordinator node, which means that all needed data is to be

retrieved, which leads to greater time needed to compute same

amount of data, across clusters with different node count. As

the amount of data needed to be computed rises, so does the

execution time. Time needed to compute energy consumption

over five months is 7805ms for a cluster with two nodes,

8929ms for a cluster with four nodes and 8697ms for cluster

with six nodes.

Figure 2. Time needed for computing consumed energy on Standard D4 v2

machines

To compute encrypted energy consumption over one month

for one customer, with daily energy consumption being

stored, using Standard D4 v2 machines, Cassandra needs

302ms, when cluster has two nodes, 599ms for cluster with

four nodes, and 653ms for cluster with six nodes. These times

are smaller than the ones in previous case. Reason for smaller

execution time is that Standard D4 v2 machines have greater

number of CPU cores, memory and IOPS.

Figure 3. Comparison between clusters with six nodes and different machine

types

Another graph is shown on Figure 3, which depicts the

difference between cluster with six nodes using Standard D2

v2 machines, and cluster with six nodes using Standard D4 v2

machines. Time needed to compute consumed energy is

roughly 29% smaller when Standard D4 v2 machines are

used, which indicates the importance of choosing appropriate

machine.

To show how encryption slows down the process of

computing using UDF and UDA, test which contained same

amount of data, but used plain data instead of using encrypted

values for consumed energy, was done. Test was done for a

cluster with four nodes, each node was a Standard D2 v2

machine. To compute consumed energy for five months,

Cassandra needs 246ms, which is 36 times faster than the time

needed to compute same amount of encrypted data.

V. CONCLUSION AND FUTURE WORK

Using UDF and UDA for computing small amount of data

is fast, but as the amount of data needed to be computed rises,

the execution time rises almost exponentially. Also, UDF and

UDA are not made for distributed use, so the time needed for

computation rises with more nodes in cluster, since data needs

to be retrieved to coordinator node. Using stronger machines,

computing time can be reduced, as shown in Figure 3. One of

reasons to use UDF and UDA is to transfer computation on

server-side, instead of leaving it on the client-side. Given the

amount of data that can be computed in short period, it is to be

consider the benefits of UDF and UDA. If amount of data

needed to be computed is large, powerful machines may not

be the solution, even though stronger machines have smaller

computing time. Proposal for future work relays on Map

Reduce algorithm, which may be more suitable solution, since

it is more suitable for distributed architectures. Another

benefit from Map Reduce algorithm may help in case of large

amount of data needed to be computed.

REFERENCES

[1] A. Azougaghe, M. Hedabou, M. Belkasmi. "An electronic voting
system based on homomorphic encryption and prime numbers",
Information Assurance and Security (IAS), 2015 11th International
Conference on. IEEE, pp. 140-145, December 2015.

[2] M. Ogburn, C. Turner, P. Dahal. "Homomorphic encryption", Procedia
Computer Science, vol. 20, pp. 502-509, November 2013.

[3] A. Bhardwaj., G.V.B. Subrahmanyam, V. Avasthi, H. Sastry, "Security

Algorithms for Cloud Computing", Procedia Computer Science,

vol. 85, pp. 535-542, June 2016.

[4] X. Yi, R. Paulet, E. Bertino, Homomorphic encryption and applications,

vol. 3, Berlin, Germany, Springer, 2014.

[5] M. Tebaa, S. Hajji, A. El Ghazi. "Homomorphic encryption applied to
the cloud computing security" Proceedings of the World Congress on

Engineering. vol. 1, pp. 4-6, 2012.

[6] C. Gentry, “A fully homomorphic encryption scheme”, Ph.D.
dissertation, Standford Univ., Stanford, USA, 2009.

[7] P. Paillier, "Public-key cryptosystems based on composite degree
residuosity classes", International Conference on the Theory and

Applications of Cryptographic Techniques, Berlin, Germany, Springer,

1999.
[8] http://www.csee.umbc.edu/~kunliu1/research/Paillier.html

[9] D.S. Terzi, R. Terzi, S. Sagiroglu. "A survey on security and privacy

issues in big data" 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST), pp. 202-207, 2015.

[10] http://nosql-database.org

[11] R. Hecht, S. Jablonski. "Nosql evaluation: A use case oriented survey",
International conference on cloud and service computing, pp.336-341,
2011.

[12] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, R.E. Gruber, "Bigtable: A Distributed Storage System for

Structured Data", ACM Transactions on Computer Systems, vol. 26, pp.

1-26, 2008.
[13] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, J. Abramov, "Security

issues in nosql databases", 2011 IEEE 10th International Conference on

Trust, Security and Privacy in Computing and Communications, pp.541-
547, 2011.

[14] http://db-engines.com/en/ranking

[15] https://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/archit
ectureIntro_c.html

[16] http://www.datastax.com/dev/blog/user-defined-aggregations-with-

spark-in-dse-5
[17] https://azure.microsoft.com/en-us/documentation/articles/virtual-

machines-windows-size

