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Abstract—In this paper, we investigated a way of computing 

data, encrypted using Paillier’s homomorphic encryption scheme 

and stored in Cassandra database. For computing data, we used 

Cassandra’s User-Defined-Functions (UDF) and User-Defined-

Aggregates (UDA). Sensitive data, such as customers’ consumed 

energy was used as an example, where aggregated energy 

consumption, over a period time, was computed using UDF and 

UDA. Cassandra database was deployed on Microsoft Azure 

platform, where six different clusters were set, consisting of two, 

four and six nodes. 

 

Index Terms—Paillier encryption scheme; Big data; 

Cassandra database.  

 

I. INTRODUCTION 

One of big concerns today is who can see our information, 

who has access to it, and how that information is handled. 

More data are moved to clouds every day, which raises certain 

questions about our privacy. One way of securing our 

information and data is cryptography. Using cryptography, 

information becomes illegible and inapplicable, thus making it 

unavailable for processing. Homomorphic encryption enables 

certain mathematical operations to be applied on encrypted 

information, without knowledge of its keys. One of 

homomorphic encryption usages is electronic voting, in order 

to preserve privacy in electronic voting [1]. In [2], 

homomorphic encryption was used in medical purposes, 

where patient’s name, diastolic and systolic pressure numbers 

were encrypted using homomorphic encryption. 

Homomorphic encryption may be applied in finance sector, 

where “functions computed on the data as well as the data 

itself should remain private” [2]. Combining storing 

information on clouds, and homomorphic encryption, 

sensitive information can be stored in one of NoSQL 

databases, and still enable mathematical operations to be 

executed over encrypted data. In this paper, we present a way 

of handling encrypted data with Paillier’s homomorphic 

encryption scheme, in Cassandra NoSQL database. 
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The remainder of this paper is organized as follows. Section 

II reviews homomorphic encryption and Paillier 

homomorphic encryption scheme in details. Section III gives 

an overview on Big Data and NoSQL databases, 

concentrating on User-Defined-Functions and User-Defined-

Aggregates in Cassandra database. Section IV describes 

conducted tests and presents tests’ results. Section V 

summarizes our testing and gives a scope for future work.  

II. SECURITY 

A. Cryptography 

Cryptography transforms readable data into non-readable 

data, thus aggravating easy data reads. As stated in [3], 

cryptography is the science of using mathematics for making 

plain text information (P) into an unreadable cipher text (C) 

format called encryption and reconverting that cipher text 

back to plain text called as decryption with the set of 

cryptographic algorithms (E) using encryption keys (k1 and 

k2) and the decryption algorithm (D) that reverses and 

produces the original plain text back from the cipher text. This 

can be interpreted as cipher text C = E {P, k1} and plain text 

P = D {C, k2}. 

B. Homomorphic encryption 

Certain use cases require mathematical operations over 

encrypted data. One of these use cases is described in [1], 

where addition needs to be applied on encrypted data. To be 

able to perform mathematical operations over encrypted data, 

encryption algorithms need to have homomorphic property. 

By definition [4]: Given two groups (G, ◊) and (H,  ), a 

group homomorphism from (G, ◊) to (H,  ) is a function f:   

G → H such that for all g and g’ in G it holds that 

 

.)'()()'( gfgfggf                           (1) 

 

One way to classify homomorphic encryption is by 

operation which scheme supports. In partially homomorphic 

encryption, only one operation can be performed, addition or 

multiplication. A more advanced scheme is somewhat 

homomorphic encryption, which supports more than one 

operation, but for a limited number of addition and 

multiplication operations. The most advanced scheme is fully 

homomorphic encryption, which can compute any function 

[2].  

Another classification of homomorphic encryption differs 

additive and multiplicative homomorphic encryption. When 

addition can be performed on encrypted text and decrypting 
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cipher text matches the original sum, homomorphic 

encryption is called additive [5]. As shown below, addition of 

plain text corresponds to multiplication of cipher text 
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When multiplication can be performed on encrypted text 

and decrypting cipher text matches the original multiplication, 

homomorphic encryption is called multiplicative [5], which 

corresponds to 
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Some of homomorphic encryptions are: Goldwasser-Micali, 

Boneh-Goh-Nissim, Paillier, El-Gamal [4], which are partially 

homomorphic encryptions, and Gentry [6], which is fully 

homomorphic encryption. 

C. Paillier homomorphic encryption 

In this paper, focus will be on Paillier’s homomorphic 

encryption scheme, due to its additive characteristic. This 

encryption scheme has additive homomorphic encryption 

property and is an asymmetric algorithm. Scheme was 

proposed by Pascal Paillier in 1999 [7]. Paillier encryption 

scheme consists of following steps [4]:  

- Key generation: since Paillier encryption is an 

asymmetric algorithm, public and private key needs to 

be generated. First step of key generation is choosing 

two prime numbers p and q, so that greatest common 

divisor is 1 
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Then n and λ need to be computed, where pqn  , 

and λ is the least common multiple of )1( p  and 

)1( q . Next step includes selecting random integer g, 

where *
2n

g  and compute µ as 
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where L is defined as 
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By computing n, λ, and µ and selecting g, keys are 

formed as Public (n, g) and Private (λ, µ). 

- Encryption: to compute cipher text, random r, where 
*

n
r  , needs to be generated, and then cipher text 

can be computed as 
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-  Decryption: to decrypt cipher text, formula below is 

used: 
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- Homomorphic properties: as stated before, Paillier 

encryption scheme has additive homomorphic 

properties, i.e. multiplication of encrypted data is 

equivalent to addition of plain data 
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 Implementation of Paillier encryption scheme which 

corresponds to described equations and will be used later is 

written in Java and located in [8]. 

III. BIG DATA 

One of currently trending topics is Big Data. Considering 

Big Data as large amount of data or information is misleading, 

Big Data is much more to that. As stated in [9], Big Data can 

be described with 5 Vs: velocity, variety, volume, veracity 

and value. Volume is a characteristic of Big Data which 

describes the size of data, velocity is the high speed of data, 

variety indicated heterogeneous data types and sources, 

veracity describes consistency and value provides outputs for 

gains from large data sets. 

Closely related to term Big Data are NoSQL databases. 

NoSQL (“no SQL” or “not only SQL”) databases are next 

generation databases, as they are being non-relational, 

distributed, open-source and horizontally scalable [10]. CAP 

theorem applies to NoSQL databases, since these databases 

are a distributed management system. Given that, 

Consistency, Availability and Partition tolerance cannot be 

satisfied all at the time, meaning two out of three 

characteristics are chosen to be applied. NoSQL databases 

choose availability, partition tolerance in speed instead of 

consistency. Relational databases have ACID characteristics, 

i.e. Atomicity, Consistency, Isolation and Durability, whereas 



 

BASE characteristics, Basically available, Soft state, 

Eventually consistency, apply NoSQL. NoSQL databases are 

divided into four major types [11]: 

- Key value store: this type of database is schema free and 

data is stored as a key-value pair, similarly to maps or 

dictionaries. NoSQL databases which are key value 

store are Project Voldemort and Redis. 

- Column family store: also known as wide column store. 

Column family store data model is “sparse, distributed 

and a persistent multidimensional sorted map” [12]. 

Cassandra, HBase and Bigtable are column family 

NoSQL databases. 

- Graph database: specialized for efficient management of 

heavily linked data. Applications which use many 

relationships are more suited for graph databases. 

Neo4j and GraphDB are graph NoSQL databases. 

- Document store: data is organized into documents, where 

each document has a special key “ID”, which is unique 

and identifies a document explicitly. JSON format is 

used for representing data in document store databases. 

Some of document store databases are MongoDB and 

Riak. 

A. Cassandra database 

Cassandra is an open source, distributed NoSQL database 

management system. By being distributed management 

system, Cassandra has data across all here nodes, thus making 

Cassandra an available service with no single point of failure 

[13]. According to [14], Cassandra is the leading wide column 

store database, given its popularity. For writing queries in 

Cassandra, Cassandra query language (CQL) is used, as an 

alternative to Structured query language (SQL). Key terms in 

Cassandra architecture are [15]: 

- Node: place where data is stored, it is the basic 

infrastructure component of Cassandra. Specific node 

is coordinator node, which determines which nodes in 

the ring should get the request, based on the cluster 

configured snitch. 

- Data center: a collection of related nodes. Replication is 

set by data center. 

- Cluster: is a container for one or more data centers. 

To fully understand Cassandra, Cassandra’s data model 

should be explained. Keyspace is the container of column 

families, which can be analogous to schema in relational 

databases. Column family represents an ordered list of 

columns, which is analogous to table in relational databases. 

Row is a collection of columns and is identified by a key, 

which determines which node the data is stored on. Column is 

a triplet that contains a name, a value and a timestamp, 

making it the smallest increment of data. Super column is a 

column whose values are columns [13]. 

B. User-Defined-Functions and User-Defined-Aggregates 

As of Apache Cassandra 2.2, User-Defined-Functions 

(UDF) and User-Defined-Aggregates (UDA) are available. 

UDF and UDA enable user to build their own scalar 

functions, and their own aggregations [16]. The idea behind 

UDF and UDA is to transfer computation to server side, thus 

avoiding retrieving data and applying aggregation on the 

client-side [12]. UDF and UDA are executed on the 

coordinator node, meaning all the necessary data for functions 

and aggregations need to be retrieved to coordinator node. 

Usage of UDF and UDA, as well as CQL syntax for creating 

UDF and UDA will be given and interpreted in next section. 

IV. CASE STUDY 

Since the purpose of UDF and UDA is building custom 

functions and aggregations, combining that with Paillier’s 

encryption scheme, sensitive data can be stored in Cassandra 

and custom aggregations can be applied on that data. For 

demonstration, we will use an example of energy 

consumption, i.e. how much energy customers spend hourly. 

Since the amount of energy consumed is sensitive data, this 

data can be encrypted using Paillier’s encryption. In this 

paper, we will not discuss how key management is done, or 

how the data is sent to the Cassandra cluster. This will be 

considered done in most secured and efficient way.  Our goal 

is to show how UDF and UDA can be used to compute energy 

consumption, which is encrypted, for a certain customer, in a 

certain period. 

Testing scenario that will be described is that every 

customer’s energy consumption for the hour is sent to a 

certain database, where it is stored, in encrypted form, using 

Paillier’s encryption scheme. For data storage, we will use 

Cassandra. Also, connected to Cassandra database is a utility, 

which needs to have information on how much energy certain 

customer has consumed over a given period. For encrypting 

consumed energy and decrypting the amount of consumed 

energy over time Paillier encryption scheme implementation 

is used [8]. When acquiring data from database, utility will 

receive aggregated data from Cassandra in encrypted form, 

which needs to be decrypted. For storing customers’ 

consumed energy over time, ‘consumption’ table can be 

created as, in keyspace ‘test’: 

CREATE KEYSPACE test WITH REPLICATION = 

{'class': 'SimpleStrategy', 

'replication_factor': 2}; 

CREATE TABLE consumption ( 

customer_unique_id uuid, 

day date, 

ts timestamp, 

consumed_energy varint, 

PRIMARY KEY (customer_unique_id, ts)); 

Property ‘customer_unique_id’ represents the 

customer’s unique id, ‘day’ represents the day for which the 

read was done, ‘ts’ represents the time when the energy 

consumption was read, ‘consumed_energy’ represents the 

amount of energy consumed for the day. The primary key in 

this table is customer’s id and ‘ts’. Since the consumed 

energy will be encrypted, varint type is used for storing large 

numbers. 

To compute amount of consumed energy over a certain 

period, UDF and UDA need to be applied. For this purpose, 



 

function ‘multiply’ is created, with arguments ‘next’ and 

‘current’. This function returns multiplied values, since the 

input data are encrypted and Paillier’s encryption scheme for 

encrypted data is equivalent to addition of plain text. Also, an 

aggregate ‘multiplyPaillier’ is created, which will be 

called for column which needs to be aggregated, i.e. column 

‘consumed _energy’. Aggregated value’s size is 

increased by each operation, which can result in over 10,000 

ciphers. The type of aggregated value is ‘varint’, which 

corresponds to ‘BigInteger’ in Java, thus large numbers are 

not an issue, given that ‘BigInteger’ range is 
VALUEMAXInteger _.2  to VALUEMAXInteger _.2 .  

CREATE OR REPLACE FUNCTION 

test.multiply(next varint, current 

varint)  

CALLED ON NULL INPUT 

RETURNS varint  

LANGUAGE java 

AS '  

if (next == null) 

 return current;  

 else  

 return next.multiply(current);'; 

Interpreting creation of UDF: 

- UDF can be created using ‘CREATE’ clause, combined 

with ‘OR REPLACE’, if the UDF already exists. 

- Since the scope of UDF is keyspace, ‘test.’ can be 

added, where it represents the keyspace’s name. 

- List of arguments can be passed to UDF, where type and 

argument name should be provided. In our example, 

‘next’ and ‘current’ are parameters with type 

‘varint’. 

- When ‘CALLED ON NULL INPUT’ is used, UDF will 

be called even if the input argument is null. Instead of 

this statement, ‘RETURNS NULL ON NULL 

INPUT’ can be used, and will return null for null 

argument. 

- Return type should be set according to specified list of 

valid CQL types. 

- Available languages to write source code are Java, 

Javascript, Groovy, Scala, JRuby and JPython. In our 

example, Java language is used. 

For creating UDA, next statement is used: 

CREATE OR REPLACE AGGREGATE 

test.multiplyPaillier(varint) SFUNC 

multiply STYPE varint INITCOND null; 

Interpreting creation of UDA: 

- As in UDF creation, rules for ‘CREATE’ clause apply. 

- Unlike UDF, UDA only accepts the list of types as an 

input parameter. 

- ‘SFUNC’ clause points to UDF, as an accumulator 

function. 

- STYPE’ clause is the type of the state to be passed to 

‘SFUNC’ for accumulation, as well as the return type. 

- ’INITCOND’ states the initial value of the state. 

To compute consumed energy in one month, next statement 

should be executed: 

SELECT multiplyPaillier(consumed_energy) 

FROM consumption WHERE day<'2016-05-27' 

AND day>'2016-04-27' and 

customer_unique_id=’ 9c41cebc-a987-11e6-

80f5-76304dec7eb7; 

Our testing scenario included computing consumed energy 

for a period, for one customer. However, another useful 

information may also be how much energy was consumed 

over a period, for a larger area, e.g. substation or a region. To 

gain such information, ‘WHERE’ clause would have to involve 

more customers. 

To test this scenario, we have set up Cassandra cluster on 

Microsoft Azure, with two, four and six nodes. Each node is a 

Standard D2 v2 machine (2 CPU cores, 7GiB Memory, 4x500 

IOPS) [17]. Since Cassandra is distributed database, it is very 

unlikely to be used as a single node cluster. Each cluster has a 

keyspace, table, UDF and UDA set as previously described. 

Also, table has 100.000 rows. Testing will be done for a 

period of one, two, three, four and five months. To measure 

time needed to compute consumed energy over time, ‘tracing 

on;’ option is used in Cassandra. When tracing option is 

turned on, execution time of every statement is measured, and 

shown in  µs . 

In Figure 1, time needed to compute consumed energy for 

one customer, over a certain period is shown. 

 
Figure 1. Time needed for computing consumed energy on Standard D2 v2 

machines 

 

Time needed to compute is shown in ms, and the period, for 

which the computation is done, is given in months. To 

compute encrypted energy consumption over one month for 

one customer, with daily energy consumption being stored, 

Cassandra needs 623ms, when cluster has two nodes, 788ms 

for cluster with four nodes, and 855ms for cluster with six 

nodes. As stated earlier, UDF and UDA are executed only on 

coordinator node, which means that all needed data is to be 

retrieved, which leads to greater time needed to compute same 

amount of data, across clusters with different node count. As 

the amount of data needed to be computed rises, so does the 

execution time. Time needed to compute energy consumption 

over five months is 7805ms for a cluster with two nodes, 

8929ms for a cluster with four nodes and 8697ms for cluster 



 

with six nodes. 

 
Figure 2. Time needed for computing consumed energy on Standard D4 v2 

machines 

 

To compute encrypted energy consumption over one month 

for one customer, with daily energy consumption being 

stored, using Standard D4 v2 machines, Cassandra needs 

302ms, when cluster has two nodes, 599ms for cluster with 

four nodes, and 653ms for cluster with six nodes. These times 

are smaller than the ones in previous case. Reason for smaller 

execution time is that Standard D4 v2 machines have greater 

number of CPU cores, memory and IOPS. 

 
Figure 3. Comparison between clusters with six nodes and different machine 

types 

 

Another graph is shown on Figure 3, which depicts the 

difference between cluster with six nodes using Standard D2 

v2 machines, and cluster with six nodes using Standard D4 v2 

machines. Time needed to compute consumed energy is 

roughly 29% smaller when Standard D4 v2 machines are 

used, which indicates the importance of choosing appropriate 

machine. 

To show how encryption slows down the process of 

computing using UDF and UDA, test which contained same 

amount of data, but used plain data instead of using encrypted 

values for consumed energy, was done. Test was done for a 

cluster with four nodes, each node was a Standard D2 v2 

machine. To compute consumed energy for five months, 

Cassandra needs 246ms, which is 36 times faster than the time 

needed to compute same amount of encrypted data. 

V. CONCLUSION AND FUTURE WORK 

Using UDF and UDA for computing small amount of data 

is fast, but as the amount of data needed to be computed rises, 

the execution time rises almost exponentially. Also, UDF and 

UDA are not made for distributed use, so the time needed for 

computation rises with more nodes in cluster, since data needs 

to be retrieved to coordinator node. Using stronger machines, 

computing time can be reduced, as shown in Figure 3. One of 

reasons to use UDF and UDA is to transfer computation on 

server-side, instead of leaving it on the client-side. Given the 

amount of data that can be computed in short period, it is to be 

consider the benefits of UDF and UDA. If amount of data 

needed to be computed is large, powerful machines may not 

be the solution, even though stronger machines have smaller 

computing time. Proposal for future work relays on Map 

Reduce algorithm, which may be more suitable solution, since 

it is more suitable for distributed architectures. Another 

benefit from Map Reduce algorithm may help in case of large 

amount of data needed to be computed. 
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