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Abstract—RAID storage technology improves the reliability of 
the computer storage systems. Hardware RAID 6 systems have 
been traditionally using Reed-Solomon codes. However, in 
software RAID 6 systems, different coding schemes can be 
employed. Parity array algorithms show satisfactory results, as 
they display significantly higher execution speed. In this paper, 
we have evaluated parity array EVENODD algorithm as a 
candidate for RAID 6. We have listed its main advantages 
compared to the similar algorithms. Additionally, we have shown 
the performance improvements that can be achieved through its 
parallelization on general multicore processors. 

 

Index Terms— Parallel Algorithms; RAID; Reliability; 
 

I. INTRODUCTION 

The reliability of a system is an ability to run it for a long 

period of time without failures [1]. Reliability can be 

expressed through the MTTF (Mean Time To Failure) or 

MTBF (Mean Time Between Failures) factors. MTTF is the 

average time during which no equipment failures will occur. 

MTBF represents average time between unrecoverable errors 

on a drive of a given type [2]. 

In the recent years, MTTF and MTBF factors for a single 

drive have been improving. However, if we have a system 

with N drives, the resulting MTTF and MTBF factors would 

be N times worse. Today’s large-scale storage systems 

comprise thousands of drives, and if no additional redundancy 

is introduced, the resulting MTTF would be unacceptably low.  

In order to improve the reliability, disks are organized in 

RAID systems (Redundant Array of Independent Disks). 

RAID is a data storage technology that combines multiple 

physical disk drives into single logical unit. Multiple RAID 

levels have been defined, with differences in reliability and 

performance. Standard RAID levels are numbered from 0 to 6 

and the most common types are RAID 0, RAID 1, RAID 5 

and RAID 6.  

In a RAID 6 system, two coding nodes are used, usually 

labeled as the P and Q drives. This means that the system can 

recover from the state where two drives have failed 
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simultaneously. The P drive is defined as a simple parity 

drive. The definition of the Q drive is not standard, which 

means that different coding schemes can be used. The 

requirement is that the resulting code must be maximum 

distance separable (MDS) [3-4].  

Today, we can choose between hardware and software 

based RAID solutions. Hardware RAID solutions can provide 

higher speeds. On the other side, software solutions are 

cheaper and more flexible, especially in the case of RAID 6 

where the coding algorithm is not predetermined [4].  

The recovery time for one disk is dependent on multiple 

factors: number of drives, total capacity, sustained data rates, 

etc. In software RAID systems, the processor frequency also 

influences the recovery time. Performance of RAID 6 

software system can be improved by the appropriate choice of 

an optimal algorithm. Its speed can be improved by executing 

the algorithm simultaneously on multiple processor cores, i.e. 

by parallelization. 

In this paper, we aim to improve the performance of 

EVENODD algorithm [5]. EVENODD is a well-known 

algorithm belonging to the group of parity array algorithms. 

Parity array algorithms have advantage compared to the others 

because they are not based on multiplication, which is 

expensive operation. Furthermore, EVENODD is a good 

candidate for parallelization, as it inherently has little 

sequential dependencies. 

II. THEORETICAL BACKGROUND 

A. RAID 6 

In a RAID 6 system, there are m + 2 drives in total: m data 

disks, labeled D0, D1, … , Dm−1, and 2 redundant disks, labeled 

Dm (or P drive) and Dm+1 (or Q drive). Let us assume that each 

disk is divided into small data blocks of equal size. The size 

of each block is B symbols, where the symbol size can be 

arbitrary.  

Group of blocks placed on the same position on different 

drives is called a stripe (see Fig. 1). Encoding and decoding 

are performed on the stripe level. This means that encoding of 

the k-th block on Dm or Dm+1 disk will be based on only k-th 

blocks of the data disks Di, 0,..., 1i m  .  

B. Erasure Coding Algorithms 

In RAID 6 system, Q disk is usually encoded by using 

Reed-Solomon coding scheme [6]. Reed-Solomon coding is 

based on the Galois Field GF(2
x
) arithmetic. GF addition and 

subtraction are equivalent to exclusive OR (XOR, ⊕) 
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operation. Multiplication, on the other hand, requires the 

addition of exponents, which is expensive operation. 

Therefore, other coding techniques are being considered.  

 

                                          stripe

...

D0 D1 Dm-1 Dm Dm+1

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

b0

b1

b2

b3

b4

...

 
 

Fig. 1.  Illustration of data (D0-Dm−1) and parity (Dm, Dm+1) disks composed of 

the multiple equal-sized blocks. Stripe is a sequence of blocks at the same 

position on different disks. 

 

Another important class of algorithms are parity array 

algorithms, in which all the coding can be expressed through 

the use of XOR operation. First parity array algorithm that 

was proposed was EVENODD algorithm [5]. In the following 

years, numbers of similar algorithms have been proposed, 

such as Liberation [4], RDP [7], etc. EVENODD algorithm 

performs better than Reed-Solomon due to the fact that XOR 

is much simpler operation than multiplication. Liberation 

algorithm is considered as a good alternative to EVENODD, 

due to the fact that it is not patented [4].  

There were other numerous codes mentioned in the 

literature, like X-Code [8], STAR [9], etc. These algorithms 

are either not horizontal or MDS codes, and thus cannot apply 

to RAID 6 system. There are also algorithms which propose 

the use of 3 or more coding drives, like RTP [10]. Since 

RAID 6 uses only 2 coding drives, these algorithms are also 

out of scope for RAID 6. 

 

1) EVENODD 

 

EVENODD is a parity array algorithm designed for 

tolerating double disk failure in RAID 6 systems. In the case 

EVENODD algorithm, size of the block must be 1B m  , 

where m is the number of drives excluding coding drives. This 

restriction is not crucial, since m is small and the number of 

blocks is large. 

Encoding procedure: The disk Dm is calculated as the 

simple parity of data disks, according to (1):  

 

 
1

, ,
1

, 0 2
m

l m l t
t

a a l m



      (1) 

 

The content of disk Dm+1 is calculated using (2): 
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Decoding procedure: We differentiate 4 different recovery 

cases based on which two disks have failed. 

In the case when Dm and Dm+1 redundant disks have failed, 

i.e. , 1i m j m   , the decoding procedure is effectively the 

same as the encoding procedure. 

If the Di and Dm disks have failed, i.e. ,i m j m  , the 

decoding procedure is performed according to the (3), (4) and 

(1): 
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In the case where Di and Dm+1 disks have failed, i.e.  

, 1i m j m   , we use (1) to reconstruct the disk Di, and (2) 

to reconstruct Dm+1 disk. 

The most complex case is when two data disks Di and Dj 

have failed, i j m  . In order to reconstruct the data, we 

must first find diagonal parity (5), and horizontal (6) and 

vertical syndromes (7): 
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Afterwards, we do the following recursive procedure: 

1. 1,1 ; 0, 0 1m l
m

s i j a l m       , 

2. 
,

(0) (1)
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3. 
m

s s i j   , 

4. If 1s m   stop. Otherwise go to the step 2. 

 

2) Liberation  

 

Liberation algorithm is considered for standard coding 

procedure for RAID 6. Size of the block is B w , where 

1w  must be prime number and greater or equal than number 

of data disks, m.  

 The encoding procedure starts with the creation of binary 

matrix of size  2w m wm  , called Binary Distribution 

Matrix (BDM). BDM is multiplied with vector column 

containing wm  symbols from all the data blocks in a given 

stripe. As a result, we get vector column of ( 2)w m  

symbols, which represents the vector of all the symbols in a 

stripe. Last 2w symbols are written on P and Q drives. 

Decoding procedure relies on the creation of new wk wk  

BDM’ matrix using the data from surviving devices. The 

algorithms for generating BDM matrices are omitted for the 

sake of clarity, but may be found in [4]. 



 

BDM matrix is sparse, which means that there are small 

number of non-zero elements. Thus, matrix multiplication will 

have many zero dot products. Therefore, authors propose 

technique called bit matrix scheduling. From the BDM matrix, 

schedule is created. Rather than traversing the whole matrix, 

the 5-tuples list <op, sd, sb, dd, db> is created [11]. Field op 

specifies the operation (assignment or XOR), and other fields 

identify the data on which op operation is performed (on 

which drives are the source and destination operands located, 

and the position of the operands on the drives).  

C. Jerasure  

Jerasure [11] is a C library that implements multiple erasure 

coding algorithms. It supports horizontal mode of erasure 

codes. Among implemented, there are Reed-Solomon, Cauchy 

Reed-Solomon and Liberation codes. Jerasure is dependent on 

GF-Complete library, which implements Galois Field 

arithmetic. 

D. Parallelization 

In order to speed up any program, capabilities of the 

processors must be fully utilized. As the frequency scaling of 

the processors has stalled in recent years, trends have shifted 

towards integrating multiple cores on chip [12]. Therefore, 

execution of algorithms on the multiple cores is a way to 

improve their performance.  

OpenMP is an API (Application Programing Interface) that 

allows high level parallelization of the programs. OpenMP is 

a collection of compiler directives, library routines, and 

environment variables for parallelism in C, C++ and Fortran 

programs [13]. It is intuitive, simple, and offers various other 

benefits to programmers (easy to read code, minimized race 

conditions etc.). It is intended for the systems with shared 

memory.  

In order to further improve the performance, coprocessors 

and graphic cards can be used. Coprocessor cards have up to 

hundred processing cores which execute offloaded code. E.g., 

XeonPhi 31S1P coprocessor card [14] consists of 57 cores. 

XeonPhi cores also have VPU (Vector Processing Unit) which 

is ideal for the arithmetic or logic operations performed on 

large arrays of data [15]. Graphic cards comprise hundreds to 

thousands cores, however, their capabilities are much more 

limited comparing to the coprocessor cores. E.g., NVIDIA 

Tesla K20 GPU accelerator [16] has 2496 simpler cores and 

can easily cost ~ 3000 USD. 

III. IMPLEMENTATION  

We have chosen EVENODD algorithm because it is well-

known parity array algorithm, easy to implement and 

understand, and has potential for parallelization. Parity array 

algorithms in general rely on exclusive OR operation which is 

standard logical operation and which can be easily vectorized 

if performed on the array data. Additionally, it allows easier 

parallelization, as it is the operation on which reduction can be 

done in OpenMP.  

We have implemented parallelized version of EVENODD 

algorithm in the C programing language. Parallelization was 

done using OpenMP API. Program was compiled with the 

GCC 5.4 version with optimizations level 3 (-O3) turned on.  

The main program is divided into four parts. The first part 

of the program is the initialization of data structures. The 

second part is the encoding of the P and Q disks, based on the 

chosen pattern (random, ordinary numbers, etc). Encoding 

times are measured and saved in output file. In the third part, 

we assume that two data drives have failed, based on the user 

input. The decoding procedure is initialized, and the decoding 

times are measured. In the last part, results are compared to 

check whether the simulation was successful. 

Let us assume that the total number of data drives in the 

system is m. Data and parity disks are represented as 2D array 

of integers, called data, with m rows and m + 2 columns. 

Columns 0,1,..., 1i m   represent data drives Di, while 

columns m and m + 1 represent the P and Q drives. Results are 

stored in the 2D array rdisks[m][2]. This array has only two 

columns, since we can tolerate simultaneous failures of two 

disks. The first column is reserved for the disk with smaller 

ID. 

There are 4 decoding functions, depending on which drives 

have failed: 

 decode_c0_c1_lost (Fig. 2) is called when both parity 

drives have failed; 

 decode_di_c0_lost (Fig. 3) is called when one data drive 

and the P parity drive have failed; 

 decode_di_c1_lost (Fig. 4) is called when one data drive 

and the Q parity drive have failed; 

 decode_di_dj_lost (Fig. 5) is used when two data drives 

have failed, which is the most common case. 

Function arguments f, f1 and f2 specify what the indices of the 

lost data drives are. All the decoding functions are based on 

the equations from the section II. 

 
DECODE_C0_C1_LOST (int m, int** data, int** rdisks) 

 dpar = 0 

    for t = 0 to m − 1: 
  dpar ^= data[m − 1 − t][t] 
 #pragma omp parallel for 
    for l = 0 to m − 2 

  rdisks[l][0] = 0 

  rdisks[l][1] = dpar 

  for t = 0 to m − 1: 
   rdisks[l][0] ^= data[l][t] 

   rdisks[l][1] ^= data[mod(l − t, m)][t] 

    return 

 
Fig. 2.  Pseudo-code of the decoding function when the P drive and the Q 

drive have failed simultaneously 

 

Generally, each decoding function can be split into three parts 

– calculation of diagonal parity (variable dpar), reconstruction 

of the first disk and reconstruction of the second disk. The 

diagonal parity calculation is performed by using the for loop 

which contains instruction with XOR operation. Since 

OpenMP has a reduction mechanism for the XOR operation, 

parallelization is possible. It is not advisable to perform 

parallelization in all cases, because of the large overhead. 

Therefore, we have parallelized only the dpar calculation in 

the function decode_di_dj_lost. Reconstruction procedures 



 

and the calculation of horizontal (hsyn) and vertical 

syndromes (vsyn) are implemented as nested for loop. The 

outer for loop of all the functions can be parallelized, as its 

iterations can be performed in any order, i.e. there are no 

sequential dependencies between them.  

 In the function decode_di_dj_lost, the last part represents 

the recursive procedure. In order to calculate the data 

rdisks[s][1] it is necessary to calculate the data rdisks[mod(s + 

f2 − f1, m)][0] first. The variable s must be traversed in 

specific order, starting from the s = mod (f1 − f2 − 1, m). 

Therefore, it is impossible to parallelize this section, which 

consequentially yields higher execution times.   

 
DECODE_DI_C0_LOST (int m, int f, int** data, int** rdisks) 

 dpar = data[mod(f − 1, m)][m + 1] 

    for t = 0 to m − 1: 
  dpar ^= data[mod(f − t − 1, m)][t] 

 #pragma omp parallel for 
    for k = 0 to m − 2 

  rdisks[k][0] = dpar ^ data[mod(k + f, m)][m + 1] 

  for l = 0 to m − 1: 
   if (l == f) continue 

   rdisks[k][0] ^= data[mod(k + f − l, m)][l] 

 #pragma omp parallel for 

 for l = 0 to m − 2: 
  rdisks[l][1] = 0 

  for t = 0 to m − 1: 
   if (t == f): 

    rdisks[l][1] ^= rdisks[l][0] 

   else: 

    rdisks[l][1] ^= data[l][t] 

    return 

 
Fig. 3.  Pseudo-code of the decoding function when the P drive and one data 

drive have failed simultaneously 

 

DECODE_DI_C1_LOST (int m, int f, int** data, int** rdisks) 

 dpar = 0 

    for l = 0 to m − 2: 

  rdisks[l][0] = data[l][m] 

  for t = 0 to m − 1:  
   if (t == f) continue 
   rdisks[l][0] ^= data[l][t] 

    for t = 0 to m − 1: 
  if (t == f): 

   dpar ^= rdisks[m − 1 − t][0] 

  else: 

   dpar ^= data[m − 1 − t][t] 
 #pragma omp parallel for 

 for l = 0 to m − 2: 
  rdisks[l][1] = dpar 

  for t = 0 to m − 1: 
   if (t == f): 

    rdisks[l][1] ^= rdisks[mod(l − t, m)][0] 

   else: 

    rdisks[l][1] ^= data[mod(l − t, m)][t] 

    return 

 
Fig. 4.  Pseudo-code of the decoding function when the Q drive and one data 

drive have have failed simultaneously 

 

Encoding and decoding times were measured using 

omp_get_wtime () OpenMP function. Encoding and decoding 

procedures were ran multiple times, and the mean values were 

calculated.  

Number of disks, blocks, threads, IDs of failed disks and 

number of measurements are all passed as arguments to the 

program. Results are written to the textual output files. Output 

files are interpreted by python language, and graphs were 

created. For the graphs creation, we have used matplotlib 

library.  

 
DECODE_DI_DJ_LOST (int m, int f1, int f2, int** data, int** rdisks) 

 dpar = 0 

 #pragma omp parallel for reduction(^:dpar) 
    for l = 0 to m − 2: 
  dpar ^= data[l][m] 

  dpar ^= data[l][m + 1] 

 #pragma omp parallel for 
 for u = 0 to m − 1: 

  hsyn[u] = 0 

  vsyn[u] = dpar ^ data[u][m + 1] 

  for l = 0 to m − 1: 

   if ((l == f1) || (l == f2)) continue 

    hsyn[u] ^= data[u][l] 

    vsyn[u] ^= data[mod(u − l, m)][l] 

  hsyn[u] ^= data[u][m] 

 s = mod(f1 − f2 − 1, m) 

 while (s != (m − 1)): 

  rdisks[s][1] = vsyn[mod(f2 + s, m)] ^ rdisks[mod(s + f2 − f1, m)][0] 

  rdisks[s][0] = hsyn[s] ^ rdisks[s][1] 

  s = mod(s + f1 − f2, m) 

 return 

 
Fig. 5.  Pseudo-code of the decoding function when two data drives have 

failed simultaneously 

 

We set the number of threads with omp_set_num_threads () 

function. Parallelization is done by using pragma #pragma 

omp parallel for. This pragma divides the iterations of the 

following FOR loop, and they will be executed on different 

threads. The way in which iterations are divided is specified 

through schedule () option.  In our case, we have used 

schedule (static, 16) or schedule (auto) options. 

Schedule (static, 16) option divides all iterations of the 

following FOR loop into groups of 16, and gives to each 

thread different group of iterations to execute. By doing so, 

we can minimize the false sharing. If we calculate diagonal 

parity, it is better to use schedule (auto) option, in which the 

compiler will decide about the best possible scheduling 

technique. We have also tried dynamic scheduling options, 

and static schedule options with different numbers of 

iterations in group, but the results were poorer. 

IV. TESTING 

Characteristics of testing machine are presented in Table I. 

We have measured execution times of encoding and decoding 

procedures, and then converted them into bit rate. For each 

test, measurements were done 10 times in total, and the mean 

value was calculated.  
 

TABLE I 

TESTING MACHINE CHARACTERISTICS 

 

Processor Intel Xeon E5-2620v3 @ 2.4 GHz 
Number of cores 6 per processor, 2 threads per core 

Cache size L1 = 32K + 32K; L2 = 256K; L3 = 15M 

RAM size 64GB DDR3 @ 1866 MHz 

OS RHEL 7.2 

 



 

We have measured encoding and decoding times for 

sequential and parallelized EVENODD algorithm for different 

number of threads. Decoding times were measured for 4 

cases, depending on which 2 drives have failed in the system 

– two data drives (Di and Dj), two parity drives (P and Q), or 

one data and one parity drive (Di and P or Di and Q). 

Decoding procedure in the case where P and Q drives have 

failed is identical as the encoding procedure, and therefore we 

have included only one graph. 

Parallelized versions were tested for different number of 

threads, up to the total number of cores. Higher number of 

threads would be suboptimal, as the threads cannot be 

executed simultaneously. Each thread was bound to the 

separate core. We have also tested the impact of hyper 

threading, but the results showed only minor performance 

improvement. 

V. RESULTS 

In the Fig. 6 we can see the encoding performance of 

EVENODD algorithm for different number of threads. 

Sequential algorithm is better than all parallel versions if 

number of disks is smaller than 19. For larger number of 

disks, parallel versions are more than 1.8 times better. For the 

6 threads, parallel version is up to 4.6 times faster. 

 

 
 

Fig. 6.  Encoding performance of EVENODD algorithm for different number 

of threads 

 

Fig. 7 shows the decoding performance in the case when 

two data drives have failed. This is the most common 

situation, as we have much more data disks than parity disks. 

Sequential version is faster for the number of disks smaller 

than 29. For the number of disks larger than 127, the best 

option is to use parallelized EVENODD with 6 threads, as the 

algorithm is around 5 times faster than sequential version. If 

the number of disks is between 29 or 127, the speed is 

optimized by different number of threads. 

Fig. 8 shows the decoding performance of EVENODD 

algorithm when one data drive have failed along with the P 

parity drive. Sequential algorithm is better to use if the 

number of disks is smaller than 17. For larger number of 

disks, it is always better to use the parallel version with 6 

threads. In the best case, parallel algorithm is around 5.6 times 

better than the sequential algorithm.  

 

 
 

Fig. 7.  Decoding performance of EVENODD algorithm for different number 

of threads in the case when two data drives have failed 

 

 
 

Fig. 8.  Decoding performance of EVENODD algorithm for different number 

of threads in the case when the P drive and one data drive have failed 

 

 
 

Fig. 9.  Decoding performance of EVENODD algorithm for different number 

of threads in the case when the Q drive and one data drive have failed 



 

Results for the case when one data drive and the Q drive 

have failed are presented in Fig. 9. Sequential version is the 

best option for the number of disks smaller than 19. For larger 

number of disks, it is better to use parallelized algorithm with 

6 threads. However, improvements are slightly worse than in 

previous cases. In the best case, parallel EVENODD 

algorithm is better than the sequential one 2.2 times. 

We have also considered the Liberation code as the 

alternative to the EVENODD algorithm. We have compared 

speeds of sequential Liberation algorithm and sequential 

EVENODD algorithms. For the Liberation algorithm 

implementation, we have chosen the jerasure library. 

However, performance of the sequential Liberation algorithm 

was poorer, as it can be seen in the Fig. 10.  

From the Fig. 10, we can see that the encoding and 

decoding speeds of sequential EVENODD are around 5 times 

faster than the Liberation algorithm from jerasure library. For 

the decoding, we have considered the case where two data 

drives have failed. Results for the other combination of drives 

were similar. 

 

 
 

Fig. 10.  Encoding and decoding speeds of sequential Liberation and 

EVENODD algorithms in the case when two data drives have failed 

VI. CONCLUSION 

In order to improve the reliability of the computer storage 

systems, RAID 6 is becoming popular as it allows the 

recovery from two simultaneous disk failures. The first 

recovery drive is defined to be a simple parity drive, while the 

definition of the second drive is left open. Therefore, multiple 

solutions have emerged, and the most promising candidates to 

be used are the parity array algorithms. 

Liberation algorithm is a parity array algorithm based on 

EVENODD, which is considered as a good candidate for 

RAID 6. In this paper, we have compared execution times of 

sequential liberation and EVENODD algorithms, and 

concluded that EVENODD performs five times better. 

Additionally, EVENODD is easier to parallelize, as it is based 

on XOR operation and has little sequential dependencies. 

As the final contribution, we have parallelized the 

algorithm by using OpenMP API. Parallel EVENODD shows 

improvement for the large number of disks. In the most 

common case when the two data drives have failed, parallel 

EVENODD is the best option when the number of disks is 

larger than 29. If the number of drives is larger than 127, 

parallel EVENODD can be more than five times faster. 
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