

Abstract—In order to achieve better performance results for

the generated code various compiler optimizations are

performed during the compilation process. Even though it is

expected that optimization would improve the code quality, for

embedded processor with small amount of resources applying

certain optimizations can sometimes lead to generation of larger

number of instructions (i.e. larger code size and slower

execution). One such optimization is a loop optimization -

invariant code motion. In this paper we present improvements to

the implementation of this optimization in an embedded

processor oriented compiler infrastructure which give good

results in cases of high register pressure. The enclosed test results

for translated code with and without proposed improvements

show that our new approach generates code with better

performance in all cases.

Index Terms—Compiler optimization, invariant code motion,

high register pressure

I. INTRODUCTION

Having a high quality compiler for certain processor is not

an uncommon practice. It is actually quite the opposite and

nowadays there is a high demand for fast, robust and reliable

compilers that can generate code with high quality. Quality of

the code most often refers to code size (number of instructions

in memory) or code speed (number of cycles needed for the

code execution).

In the embedded systems domain both characteristics are

highly desirable and an ideally generated code has the

performance near to the hand-written assembly code. In other

words, the generated code is small and fast. However,

designing and developing such compilers is not a trivial job to

do. Especially if the quality of the source code is taken into

account. Compiler has to understand and recognize certain

constructs from the source code and to perform the best

compilation strategy in order to generate the best code, despite

the way those are written in the starting language. There are

two approaches for dealing with this problem:

 Source code adaptations

Ivan Považan, RT-RK Institute for Computer Based Systems, Narodnog

fronta 23a, Novi Sad, Serbia (e-mail: ivan.povazan@rt-rk.com)
Marko Krnjetin, RT-RK Institute for Computer Based Systems, Narodnog

fronta 23a, Novi Sad, Serbia (e-mail: marko.krnjetin@rt-rk.com)

Miodrag Đukić, Faculty of Technical Sciences, Trg Dositeja Obradovića
6, Novi Sad, Serbia (e-mail: miodrag.djukic@rt-rk.uns.ac.rs)

Miroslav Popović, Faculty of Technical Sciences, Trg Dositeja

Obradovića 6, Novi Sad, Serbia (e-mail: miroslav.popovic@ rt-rk.uns.ac.rs)

 Compiler optimizations

First approach relates to adapting the source code for

certain compiler according to compiler specific coding

guidelines which can help compiler in code generation.

On the other hand, more ideally, compiler should

automatically perform the same and should not depend on the

source code. Therefore compilers implement various

optimizations which are performed automatically on the

source code, or are available through compiler switches to the

user, in order to achieve the best performance. Complier

optimizations are not independent and applying one can affect

the other which can result in better or worse code. Choosing

the best combination of optimizations which would generate

the best code, is a complex problem. Furthermore,

compilation passes like instruction selection, resource

allocation and instruction scheduling also need to be

interleaved and interconnected for embedded processors to

achieve better results, which additionally complicates

choosing the best compilation strategy [1]. Clearly for DSP

applications the most critical part of the source code, which

need to be condensed down as much as possible, are loops.

Optimizations like loop unrolling, software pipelining, loop

tiling, invariant code motion, induction variable detection,

hardware loop detection and similar, generally improve the

quality of the generated code by significant percentage.

However, the question is: is this always true?

Most of mentioned loop optimizations are machine

independent optimizations and are performed on high level of

intermediate representation of the translated code. This means

that some target architecture specifics like: available resources

or available machine instructions are not considered at that

point in the compilation process, and applying such

optimization can have undesirable effects. Moving the code

outside of the loop usually increases the number of

interferences between operands and can cause spills which

increases the overall number of instructions. In this paper we

present improvements for the implementation of invariant

code motion optimization which solve these problems.

The paper is organized in six sections. This section gives an

introduction to the problem domain. Next section includes

description of the used compiler framework, while the third

describes initial algorithm for invariant code motion and

introduced improvements. Following section encloses test

results and discussion about improvements acquired with

modifications. Fifth section includes related work and finally

Implementation of Invariant Code Motion

Optimization in an Embedded Processor

Oriented Compiler Infrastructure

Ivan Považan, Marko Krnjetin, Miodrag Đukić, Miroslav Popović

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. RTI1.4.1-5

the last section gives a conclusion.

II. RTCC

Implementation of invariant code motion optimization,

described in this paper is a part of embedded processor

oriented compiler infrastructure called RTCC [2]. It is a class

library which includes compiler modules for creating back-

ends for embedded processor compilers. The framework

defines sets of modules for:

 analyses – control flow, data dependency, call

graph, liveness, alias, single static assignment;

 optimizations – common sub-expression

elimination, dead code elimination, constant

propagation, hardware loop detection, invariant

code motion, induction variable detection, copy

propagation

 compilation passes – instruction selection, resource

allocation, instruction scheduling, code generation

 modelling target architecture – resources,

instructions, hazards, latencies, parallelization

rules

 IR (intermediate representation) – translation from

FE IR (front-end intermediate representation),

definition of BE IR (back-end intermediate

representation)

IR is defined in form of graph of connected basic blocks

that include list of operations. HLIR - high level intermediate

representation includes high level operations which are

independent of the target architecture, while LLIR - low level

intermediate representation or low level operations include

target specific instructions. Creating a custom compiler

requires using an existing front-end and modelling the target

processor with RTCC modules, where some of them can be

used directly while others can be derived and adjusted

according to target architecture specifics.

Source code translation is performed in the compiler’s FE

until IR is reached. After that FE IR is transformed into RTCC

HLIR and compilation resumed in the BE of the compiler.

Control flow, data dependency, call graphs, and other

analyses are then performed on the HLIR in order to provide

additional information used by other compilation passes and

high level code optimizations. Afterwards, HLIR is lowered to

LLIR with instruction selection module by applying rewriting

rules which translate abstract representation into target

specific instructions. When LLIR is reached, low level

optimizations, instruction scheduling and resource allocation

are performed. Finally, the assembly code is generated.

One of the available optimization modules, within RTCC

library, is invariant code motion module described in this

paper.

III. INVARIANT CODE MOTION

A. HLICM – High level invariant code motion

Invariant code motion is a loop optimization technique

which detects computation within a loop which result does not

change over loop iterations, and moves that computation from

the loop body in order to improve performance of the

generated code. This motion is also called hoisting. The

technique is most often used on HLIR in order to hoist

invariant expressions, but can be also used during low level

passes. Initially, RTCC included HLICM described in paper

[3] which was implemented to work only as high level

optimization.

In order to describe the HLICM algorithm we first need to

define how to detect invariant computation; then where we

can move the code; and finally how to determine if code is

movable. These three procedures are defined according to [4]

as follows:

Definition 1: The definition d: t ← a1 op a2 is loop-

invariant within loop L if, for each source operand ai:

1. ai is a constant,

2. or all the definitions of ai that reach d are outside

the loop

3. or only one definition of ai reaches d, and that

definition is loop-invariant

4. op some operation

Definition 2: The preheader basic block p of the loop L is

immediate dominator of head basic block for the loop L

Definition 3: The definition d: t ← a1 op a2 can be hoisted

to the loop preheader p if:

1. d dominates all loop exists at which t is live-out

2. and there is only one definition of t in the loop

3. and t is not live-out of the loop preheader p

Fig. 1 shows simple example with invariant code which can

be detected on HLIR. The output generated after HLICM

module is displayed in Fig. 2 which shows that the algorithm

can successfully detect such scenarios.

However, there are scenarios where HLICM does not work

as expected. Fig. 3 shows slightly modified example which is

not covered by HLICM and will not be optimized as it can be.

The reason for this is that global variables are not covered in

the initial algorithm, and if they are volatile or changed over

their address, the optimization cannot detect if they are

L1:

 i = 0

 a = 0x101

 t = a & b

L2:

 if (i > 100) jmp L3

 array[i] = t

 i++

 jmp L2

L3:

L1:

 i = 0

L2:

if (i > 10) jmp L3

 a = 0x101

 array[i] = a & b

 i++

 jmp L2

L3:

L3:
Fig. 1. ICM example before HLICM optimization

Fig. 2. ICM example after HLICM optimization

invariant, due to the lack of information. In this particular

example t = mem[a] is invariant, because a is changed after

the loop.

Furthermore, Fig. 4 shows slightly different situation where

high level comparison (i < 200) cannot be hoisted due to

dependency of one of the source operands.

If we observe Fig. 5 we can see low level representation of

the example from Fig. 4. Focusing on comparison and its low

level representation we can see that there are additional

opportunities for increasing code efficiency:

HLIR: if (i < 200)

LLIR: load 199, t1 // invariant

 cmp i, t1

Low level load becomes another potential operation for

invariant code motion. Following subsection proposes

improvements for these cases.

B. LLICM – Low level invariant code motion

Fig. 3 shows an example where global variable is used in

invariant computation. In order to detect invariant code in

such examples initial approach needs to be extended with

information from alias analysis module which determines if a

variables location has been accessed, and whether its value

has been changed over its address or not. According to this we

are adding an extension to the Definition 1 as follows:

5. if there is an (n ∈ i) that is a static storage duration

variable - an must not be not volatile, and its value

is not changed over address before usage

By implementing this extension the LLICM can detect and

safely hoist loading of a variable outside of the loop in the

given example, since its value is changed over the address

after the loop. However if the change *ptr = 10 was placed

inside of the loop body, LLICM would not hoist the t =

mem[a] since the alias analysis would provide information

about the change for variable a.

To answer the problem of not detecting hoistable code from

Fig. 4 we simply need to perform LLICM algorithm on low

level representation as well, just before instruction scheduling

and resource allocation, in order to enable hoisting low level

instructions that are invariant.

Clearly with both proposed improvements LLICM can

further decrease the size of the loop body.

C. RPICM – Register pressure invariant code motion

Hoisting of invariant computations is not harmful if the

resulting operands are not used within a loop. If that is not the

case, number of live operands will grow for each motion

which can lead to increased pressure on registers. When the

optimization is applied on HLIR there is no information about

used resources since the allocation is not yet performed.

However, with our modifications introduced for LLICM we

have gained the opportunity to control when to perform the

hoisting.

In order to do this we introduce RPCIM algorithm as a

modified version of LLICM which clones the LLIR before

L1:

 i = 0

L2:

 if (i > 300) jmp L3

 a = 100

 if (i < 200)

 array[i] = a & b

 i++

jmp L2

L3:

a = 0x101 // global scope

…

L1:

 ptr = &a

 i = 0

L2:

 if (i > 10) jmp L3

 t = mem[a]

 array[i] = t & b

i++

 jmp L2

L3:

 *ptr = 10

L1:

 load 0, i

 load 300, t0 // upper bound

L2:

 cmp i, t0

// gt - greater than

 jmp gt L3

 load 100, a

 load 199, t1

 cmp i, t1

 and a, b, t2

// le – less or equal than

 storec le t2, mem[array+i]

 add, i, 1, i

jmp L2

L3:

RPICM

LLIR

Invariant code
detected

Instruction
selection

Resource
allocation

Make LLIR clone

Mark hoisted
operands

Spilled by
hoisted operand

Allocation finished

LLIR = LLIR clone

Do not hoist
spillable

operands

Code generation

Yes

Yes

No

No

No

Yes

Fig. 6. RPICM algorithm

Fig. 3. ICM example with a global variable

Fig. 4. High level representation of ICM example with a comparison

Fig. 5. Low level representation of ICM example with a comparison

hoisting, performs the code motion and stores indication about

hosted operands. Afterwards, instruction scheduling and

resource allocation are performed. If a spill occurs during

resource allocation, the module checks if the spilled operand

is in interference with hoisted operand. If that is the case the

current LLIR is replaced with LLICM clone and the process is

repeated without hoisting the offending operand. In this way

we will not hoist operands that would introduce spills

otherwise. Fig. 6 shows the algorithm.

IV. RESULTS

Described improvements are added to existing port of

RTCC compiler for a custom DSP class processor. Some of

the important features of this DSP are: Harvard, load/store

architecture, VLIW, two memory banks, two arithmetic units

which allow instruction level parallelism, address generation

unit, with limited amount of data registers: 4 general purpose,

3 temporary and 4 accumulators which makes it a good

candidate for testing high pressure on registers.

In order to test the performance with and without applying

the modifications to invariant code motion optimization for

testing and verification we have used following test and

measured number of cycles required for the code execution:

 Execute group of tests that include loops from

DejaGnu test suite – 293 tests

 DSP benchmark projects which include

o FFT algorithm

o CDMA algorithm

o Bi-quad filter

o FIR filter

TABLE I

COMPARISON RESULTS IN NUMBER OF TESTS THAT AFFECTED THE GENERATED

CODE POSITIVELY OR NEGATIVELY FOR DEJAGNU TEST SUITE

DejaGNU - 293 tests

 HLICM LLICM RPICM

No effect 249 181 189

Worse code 16 29 16

Improvement 28 83 88

TABLE II

COMPARISON RESULTS OF OVERALL EFFICIENCY REDUCTION AND

IMPROVEMENT BETWEEN PROPOSED TECHNIQUES FOR DEJAGNU TEST SUITE

DejaGNU - 293 tests

 HLICM vs LLICM HLICM vs RPICM

Worse code 4.44% 0.00%

Improvement 18.77% 20.48%

TABLE III

COMPARISON RESULTS IN NUMBER OF EXECUTION CYCLES BETWEEN

PROPOSED TECHNIQUES FOR TESTED DSP APPLICATIONS

DSP applications

HLICM LLICM RPICM

FFT 56587 55989 55057

CDMA 314116 274097 274097

BIQUAD 120475 120475 120475

FIR 248157 248157 248157

TABLE IV

COMPARISON RESULTS OF OVERALL IMPROVEMENT BETWEEN PROPOSED

TECHNIQUES FOR TESTED DSP APPLICATIONS (-% MEANS FASTER CODE)

DSP applications

HLICM vs LLICM HLICM vs RPICM

FFT -1.07% -2.78%

CDMA -14.60% -14.60%

BIQUAD 0.00% 0.00%

FIR 0.00% 0.00%

Table I shows comparison results between initial

implementation of ICM – HLICM, and two new proposed

techniques LLICM and RPICM in number of DejaGNU tests

that:

 did not have any effect after ICM was applied

 generated slower code after ICM was applied

 generated faster code after ICM was applied

We can see that the best performance is gained with the

RPICM and the worse result with the initial implementation

of ICM. However, Table I also shows that LLICM introduces

worse performance for 13 test cases. This happens because

applying ICM on low level instructions increases the

opportunity for detecting and hoisting invariant code. Table II

emphasize these results furthermore, by giving an overall

comparison of reduction and improvement of performance

compared to the total amount of tests between proposed

approaches. It can be concluded again that RPICM gives the

best results and also fixes the issues introduced with low level

variant of the optimization. On the other hand, Tables III and

IV include execution cycle count comparison results for DSP

application tests, between ICM techniques and show overall

gain in percent. By analyzing the displayed results it can be

concluded that new techniques generate overall better results

for tested DSP applications.

Tables also show that even though RPICM is the best

technique overall, it still does not solve the problem of

spilling operands hoisted during high level invariant code

motion.

V. RELATED WORK

It is known that expression or instruction hoisting methods

can de-optimize the translated code. This especially comes to

the fore on target architectures with limited amount of

resources and optimizations like common sub-expression

elimination or invariant code motion. Such code movements

extend the liveness of operands and increase the number of

interferences between them causing a potential spill to happen

– RP (register pressure). There have been many attempts to

deal with this problem.

Some of them target the solution of the problem on high

level passes which can cause high register pressure. Ma and

Carr propose predictive algorithm for register pressure on a

loop in [5]. The algorithm works on a high level before unroll-

and-jam loop optimization is applied and manages to get

improvement in performance by reducing the number of

potential spilling.

On the other hand changes of the low level passes can also

improve performance. Proposed techniques like live range

splitting and rematerialization presented in [6] and [7] are

resource allocation techniques that deal better with high

register pressure. Similar is noticeable with proposed register

pressure-aware instruction scheduling proposed in [8].

Likewise, our approach includes modifications to the low

level compilation, but does not include changes to resource

allocation nor to instruction scheduling algorithms. By

providing feedback information about hoisted operands, spill

candidates and their interferences, and by allowing invariant

code motion, instruction scheduling and resource allocation to

be invoked multiple times we can achieve better results in

high register pressure scenarios which is shown in enclosed

results.

VI. CONCLUSION

Results demonstrate that improvements introduced to

invariant code motion optimization give overall much better

performance results than the initial implementation. Also

results for the proposed technique for controlling when to

perform the optimization show that in cases of high pressure

on registers compiler can successfully detect solution which

gives the best performance in all test cases.

Due to the fact that there are cases when the optimization

introduces overhead in the generated code, described

implementation can still be improved. This is true for cases

when invariant code motion happens on HLIR and therefore

one of the future improvements would be tracking the hoisted

operands on HLIR and applying similar algorithm to the one

described in this paper. However, that approach would

probably have a larger impact on compilation time.

ACKNOWLEDGMENT

This research was partially funded by the Ministry of

Ministry of Education, Science and Technological

Development of the Republic of Serbia under project No: TR-

32031. This research was performed in cooperation with the

RT-RK Institute for Computer Based Systems.

REFERENCES

[1] T. Kisuki and P.M.W. Knijnenburg and M.F.P. O'Boyle and H. A. G.

Wijshoff: "Iterative Compilation in Program Optimization",

Netherlands, 2000
[2] M. Đukić, M. Popović, N. Četić, I. Považan, "Embedded Processor

Oriented Compiler Infrastructure", Advances in Electrical and

Computer Engineering, Volume 14, Issue 3, 2014, pp: 123 – 130, DOI:
10.4316/AECE.2014.03016

[3] S. Radonić, M. Đukić, N. Četić, "Jedno resenje kompajlerske

optimizacije za premestanje invarijantnog koda van petlje", TELFOR,
Belgrade, 2014

[4] A. W. Appel, "Modern compiler implementation in C", Second edition,

pp. 418-425, Cambridge University Press, 2004.
[5] Y. Ma and S. Carr. "Register Pressure Guided Unroll-and-Jam", In The

2008 Open64 Workshop, 2008.

[6] V. Makarov "Fighting register pressure in GCC", Proceedings of GCC
Summit, 2004

[7] P. Briggs "Rematerialization" '92 Proceedings of the ACM SIGPLAN

1992 conference on Programming language design and implementation,
pp. 311-321, USA, 1992

[8] R. Govindarajan, H. Yang, J. Amaral, C. Zhang, and G. Gao "Minimum

register instruction sequencing to reduce register spills in out-of-order
issue superscalar architectures", IEEE Transactions on Computers, pp.

4-20, January 2003.

