
 

Abstract—In order to achieve better performance results for 

the generated code various compiler optimizations are 

performed during the compilation process. Even though it is 

expected that optimization would improve the code quality, for 

embedded processor with small amount of resources applying 

certain optimizations can sometimes lead to generation of larger 

number of instructions (i.e. larger code size and slower 

execution). One such optimization is a loop optimization - 

invariant code motion. In this paper we present improvements to 

the implementation of this optimization in an embedded 

processor oriented compiler infrastructure which give good 

results in cases of high register pressure. The enclosed test results 

for translated code with and without proposed improvements 

show that our new approach generates code with better 

performance in all cases.  

 

Index Terms—Compiler optimization, invariant code motion, 

high register pressure  

 

I. INTRODUCTION 

Having a high quality compiler for certain processor is not 

an uncommon practice. It is actually quite the opposite and 

nowadays there is a high demand for fast, robust and reliable 

compilers that can generate code with high quality. Quality of 

the code most often refers to code size (number of instructions 

in memory) or code speed (number of cycles needed for the 

code execution). 

In the embedded systems domain both characteristics are 

highly desirable and an ideally generated code has the 

performance near to the hand-written assembly code. In other 

words, the generated code is small and fast. However, 

designing and developing such compilers is not a trivial job to 

do. Especially if the quality of the source code is taken into 

account. Compiler has to understand and recognize certain 

constructs from the source code and to perform the best 

compilation strategy in order to generate the best code, despite 

the way those are written in the starting language. There are 

two approaches for dealing with this problem: 

 Source code adaptations 
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 Compiler optimizations 

First approach relates to adapting the source code for 

certain compiler according to compiler specific coding 

guidelines which can help compiler in code generation.  

On the other hand, more ideally, compiler should 

automatically perform the same and should not depend on the 

source code. Therefore compilers implement various 

optimizations which are performed automatically on the 

source code, or are available through compiler switches to the 

user, in order to achieve the best performance. Complier 

optimizations are not independent and applying one can affect 

the other which can result in better or worse code. Choosing 

the best combination of optimizations which would generate 

the best code, is a complex problem. Furthermore, 

compilation passes like instruction selection, resource 

allocation and instruction scheduling also need to be 

interleaved and interconnected for embedded processors to 

achieve better results, which additionally complicates 

choosing the best compilation strategy [1]. Clearly for DSP 

applications the most critical part of the source code, which 

need to be condensed down as much as possible, are loops. 

Optimizations like loop unrolling, software pipelining, loop 

tiling, invariant code motion, induction variable detection, 

hardware loop detection and similar, generally improve the 

quality of the generated code by significant percentage. 

However, the question is: is this always true?  

Most of mentioned loop optimizations are machine 

independent optimizations and are performed on high level of 

intermediate representation of the translated code. This means 

that some target architecture specifics like: available resources 

or available machine instructions are not considered at that 

point in the compilation process, and applying such 

optimization can have undesirable effects. Moving the code 

outside of the loop usually increases the number of 

interferences between operands and can cause spills which 

increases the overall number of instructions. In this paper we 

present improvements for the implementation of invariant 

code motion optimization which solve these problems.  

The paper is organized in six sections. This section gives an 

introduction to the problem domain. Next section includes 

description of the used compiler framework, while the third 

describes initial algorithm for invariant code motion and 

introduced improvements. Following section encloses test 

results and discussion about improvements acquired with 

modifications. Fifth section includes related work and finally 
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the last section gives a conclusion.  

II. RTCC 

Implementation of invariant code motion optimization, 

described in this paper is a part of embedded processor 

oriented compiler infrastructure called RTCC [2]. It is a class 

library which includes compiler modules for creating back-

ends for embedded processor compilers. The framework 

defines sets of modules for:  

 analyses – control flow, data dependency, call 

graph, liveness, alias, single static assignment; 

 optimizations – common sub-expression 

elimination, dead code elimination, constant 

propagation, hardware loop detection, invariant 

code motion, induction variable detection, copy 

propagation 

 compilation passes – instruction selection, resource 

allocation, instruction scheduling, code generation  

 modelling target architecture – resources, 

instructions, hazards, latencies, parallelization 

rules  

 IR (intermediate representation) – translation from 

FE IR (front-end intermediate representation), 

definition of BE IR (back-end intermediate 

representation) 

IR is defined in form of graph of connected basic blocks 

that include list of operations. HLIR - high level intermediate 

representation includes high level operations which are 

independent of the target architecture, while LLIR - low level 

intermediate representation or low level operations include 

target specific instructions. Creating a custom compiler 

requires using an existing front-end and modelling the target 

processor with RTCC modules, where some of them can be 

used directly while others can be derived and adjusted 

according to target architecture specifics. 

Source code translation is performed in the compiler’s FE 

until IR is reached. After that FE IR is transformed into RTCC 

HLIR and compilation resumed in the BE of the compiler. 

Control flow, data dependency, call graphs, and other 

analyses are then performed on the HLIR in order to provide 

additional information used by other compilation passes and 

high level code optimizations. Afterwards, HLIR is lowered to 

LLIR with instruction selection module by applying rewriting 

rules which translate abstract representation into target 

specific instructions. When LLIR is reached, low level 

optimizations, instruction scheduling and resource allocation 

are performed. Finally, the assembly code is generated. 

One of the available optimization modules, within RTCC 

library, is invariant code motion module described in this 

paper. 

III. INVARIANT CODE MOTION 

A. HLICM – High level invariant code motion 

Invariant code motion is a loop optimization technique 

which detects computation within a loop which result does not 

change over loop iterations, and moves that computation from 

the loop body in order to improve performance of the 

generated code. This motion is also called hoisting. The 

technique is most often used on HLIR in order to hoist 

invariant expressions, but can be also used during low level 

passes. Initially, RTCC included HLICM described in paper 

[3] which was implemented to work only as high level 

optimization. 

In order to describe the HLICM algorithm we first need to 

define how to detect invariant computation; then where we 

can move the code; and finally how to determine if code is 

movable. These three procedures are defined according to [4] 

as follows: 

Definition 1: The definition d: t ← a1 op a2 is loop-

invariant within loop L if, for each source operand ai: 

1. ai  is a constant, 

2. or all the definitions of ai that reach d are outside 

the loop 

3. or only one definition of ai reaches d, and that 

definition is loop-invariant 

4. op some operation 

Definition 2: The preheader basic block p of the loop L is 

immediate dominator of head basic block for the loop L 

Definition 3: The definition d: t ← a1 op a2 can be hoisted 

to the loop preheader p if: 

1. d dominates all loop exists at which t is live-out 

2. and there is only one definition of t in the loop 

3. and t is not live-out of the loop preheader p 

Fig. 1 shows simple example with invariant code which can 

be detected on HLIR. The output generated after HLICM 

module is displayed in Fig. 2 which shows that the algorithm 

can successfully detect such scenarios. 

 

  
 

 

 
 

 

However, there are scenarios where HLICM does not work 

as expected. Fig. 3 shows slightly modified example which is 

not covered by HLICM and will not be optimized as it can be. 

The reason for this is that global variables are not covered in 

the initial algorithm, and if they are volatile or changed over 

their address, the optimization cannot detect if they are 

L1: 

 i = 0 

 a = 0x101 

 t = a & b 

L2: 

 if (i > 100) jmp L3 

 array[i] = t 

 i++ 

 jmp L2 

L3: 

L1: 

 i = 0 

L2: 

if (i > 10) jmp L3 

 a = 0x101 

 array[i] = a & b 

 i++ 

 jmp L2 

L3: 

L3: 
Fig. 1. ICM example before HLICM optimization 

Fig. 2. ICM example after HLICM optimization 



 

invariant, due to the lack of information. In this particular 

example t = mem[a] is invariant, because a is changed after 

the loop.  

 

 
 
 

Furthermore, Fig. 4 shows slightly different situation where 

high level comparison (i < 200) cannot be hoisted due to 

dependency of one of the source operands. 
 

 
 

 
 

 

If we observe Fig. 5 we can see low level representation of 

the example from Fig. 4. Focusing on comparison and its low 

level representation we can see that there are additional 

opportunities for increasing code efficiency: 

HLIR:  if (i < 200) 

LLIR:  load 199, t1 // invariant 

   cmp i, t1 

Low level load becomes another potential operation for 

invariant code motion. Following subsection proposes 

improvements for these cases. 

B. LLICM – Low level invariant code motion 

Fig. 3 shows an example where global variable is used in 

invariant computation. In order to detect invariant code in 

such examples initial approach needs to be extended with 

information from alias analysis module which determines if a 

variables location has been accessed, and whether its value 

has been changed over its address or not. According to this we 

are adding an extension to the Definition 1 as follows: 

5. if there is an (n ∈ i) that is a static storage duration 

variable - an  must not be not volatile, and its value 

is not changed over address before usage 

By implementing this extension the LLICM can detect and 

safely hoist loading of a variable outside of the loop in the 

given example, since its value is changed over the address 

after the loop. However if the change *ptr = 10 was placed 

inside of the loop body, LLICM would not hoist the t = 

mem[a] since the alias analysis would provide information 

about the change for variable a.  

To answer the problem of not detecting hoistable code from 

Fig. 4 we simply need to perform LLICM algorithm on low 

level representation as well, just before instruction scheduling 

and resource allocation, in order to enable hoisting low level 

instructions that are invariant.  

Clearly with both proposed improvements LLICM can 

further decrease the size of the loop body.  

C. RPICM – Register pressure invariant code motion 

Hoisting of invariant computations is not harmful if the 

resulting operands are not used within a loop. If that is not the 

case, number of live operands will grow for each motion 

which can lead to increased pressure on registers. When the 

optimization is applied on HLIR there is no information about 

used resources since the allocation is not yet performed. 

However, with our modifications introduced for LLICM we 

have gained the opportunity to control when to perform the 

hoisting.  

In order to do this we introduce RPCIM algorithm as a 

modified version of LLICM which clones the LLIR before 

L1: 

 i = 0 

L2: 

 if (i > 300) jmp L3 

 a = 100 

  if (i < 200)  

  array[i] = a & b 

 i++ 

jmp L2 

L3: 

a = 0x101 // global scope 

… 

L1: 

 ptr = &a 

 i = 0 

L2: 

 if (i > 10) jmp L3 

 t = mem[a] 

 array[i] = t & b 

i++ 

 jmp L2 

L3: 

 *ptr = 10 

L1: 

 load 0, i 

  load 300, t0 // upper bound 

L2: 

 cmp i, t0 

// gt - greater than 

  jmp gt L3   

 load 100, a 

 load 199, t1 

 cmp i, t1 

 and a, b, t2 

// le – less or equal than 

 storec le t2, mem[array+i]   

 add, i, 1, i  

jmp L2 

L3: 

RPICM

LLIR

Invariant code
detected

Instruction 
selection

Resource 
allocation

Make LLIR clone

Mark hoisted 
operands

Spilled by 
hoisted operand

Allocation finished

LLIR = LLIR clone

Do not hoist 
spillable 

operands

Code generation

Yes

Yes

No

No

No

Yes

 
Fig. 6. RPICM algorithm 

 

Fig. 3. ICM example with a global variable 

Fig. 4. High level representation of ICM example with a comparison 

Fig. 5. Low level representation of ICM example with a comparison 



 

hoisting, performs the code motion and stores indication about 

hosted operands. Afterwards, instruction scheduling and 

resource allocation are performed. If a spill occurs during 

resource allocation, the module checks if the spilled operand 

is in interference with hoisted operand. If that is the case the 

current LLIR is replaced with LLICM clone and the process is 

repeated without hoisting the offending operand. In this way 

we will not hoist operands that would introduce spills 

otherwise. Fig. 6 shows the algorithm. 

IV. RESULTS 

Described improvements are added to existing port of 

RTCC compiler for a custom DSP class processor. Some of 

the important features of this DSP are: Harvard, load/store 

architecture, VLIW, two memory banks, two arithmetic units 

which allow instruction level parallelism, address generation 

unit, with limited amount of data registers: 4 general purpose, 

3 temporary and 4 accumulators which makes it a good 

candidate for testing high pressure on registers.  

In order to test the performance with and without applying 

the modifications to invariant code motion optimization for 

testing and verification we have used following test and 

measured number of cycles required for the code execution:  

 Execute group of tests that include loops from 

DejaGnu test suite – 293 tests 

 DSP benchmark projects which include  

o FFT algorithm 

o CDMA algorithm 

o Bi-quad filter 

o FIR filter 

 
TABLE I 

COMPARISON RESULTS IN NUMBER OF TESTS THAT AFFECTED THE GENERATED 

CODE POSITIVELY OR NEGATIVELY FOR DEJAGNU TEST SUITE 

 

DejaGNU - 293 tests 

 HLICM LLICM RPICM 

No effect 249 181 189 

Worse code 16 29 16 

Improvement 28 83 88 

 
TABLE II 

COMPARISON RESULTS OF OVERALL EFFICIENCY REDUCTION AND 

IMPROVEMENT BETWEEN PROPOSED TECHNIQUES FOR DEJAGNU TEST SUITE 

 

DejaGNU - 293 tests 

 HLICM vs LLICM HLICM vs RPICM 

Worse code 4.44% 0.00% 

Improvement 18.77% 20.48% 

 
TABLE III  

COMPARISON  RESULTS IN NUMBER OF EXECUTION CYCLES BETWEEN 

PROPOSED TECHNIQUES FOR TESTED DSP APPLICATIONS 

 

DSP applications 

 

HLICM LLICM RPICM 

FFT 56587 55989 55057 

CDMA 314116 274097 274097 

BIQUAD 120475 120475 120475 

FIR 248157 248157 248157 

 
TABLE IV 

COMPARISON RESULTS OF OVERALL IMPROVEMENT BETWEEN PROPOSED 

TECHNIQUES FOR TESTED DSP APPLICATIONS (-% MEANS FASTER CODE) 

 

DSP applications 

 

HLICM vs LLICM HLICM vs RPICM 

FFT -1.07% -2.78% 

CDMA -14.60% -14.60% 

BIQUAD 0.00% 0.00% 

FIR 0.00% 0.00% 

 

Table I shows comparison results between initial 

implementation of ICM – HLICM, and two new proposed 

techniques LLICM and RPICM in number of DejaGNU tests 

that:  

 did not have any effect after ICM was applied 

 generated slower code after ICM was applied  

 generated faster code after ICM was applied 

We can see that the best performance is gained with the 

RPICM and the worse result with the initial implementation 

of ICM. However, Table I also shows that LLICM introduces 

worse performance for 13 test cases. This happens because 

applying ICM on low level instructions increases the 

opportunity for detecting and hoisting invariant code. Table II 

emphasize these results furthermore, by giving an overall 

comparison of reduction and improvement of performance 

compared to the total amount of tests between proposed 

approaches. It can be concluded again that RPICM gives the 

best results and also fixes the issues introduced with low level 

variant of the optimization. On the other hand, Tables III and 

IV include execution cycle count comparison results for DSP 

application tests, between ICM techniques and show overall 

gain in percent. By analyzing the displayed results it can be 

concluded that new techniques generate overall better results 

for tested DSP applications. 

Tables also show that even though RPICM is the best 

technique overall, it still does not solve the problem of 

spilling operands hoisted during high level invariant code 

motion. 

V. RELATED WORK 

It is known that expression or instruction hoisting methods 

can de-optimize the translated code. This especially comes to 

the fore on target architectures with limited amount of 

resources and optimizations like common sub-expression 

elimination or invariant code motion. Such code movements 

extend the liveness of operands and increase the number of 

interferences between them causing a potential spill to happen 

– RP (register pressure). There have been many attempts to 

deal with this problem.  

Some of them target the solution of the problem on high 

level passes which can cause high register pressure. Ma and 

Carr propose predictive algorithm for register pressure on a 



 

loop in [5]. The algorithm works on a high level before unroll-

and-jam loop optimization is applied and manages to get 

improvement in performance by reducing the number of 

potential spilling. 

On the other hand changes of the low level passes can also 

improve performance. Proposed techniques like live range 

splitting and rematerialization presented in [6] and [7] are 

resource allocation techniques that deal better with high 

register pressure. Similar is noticeable with proposed register 

pressure-aware instruction scheduling proposed in [8]. 

Likewise, our approach includes modifications to the low 

level compilation, but does not include changes to resource 

allocation nor to instruction scheduling algorithms. By 

providing feedback information about hoisted operands, spill 

candidates and their interferences, and by allowing invariant 

code motion, instruction scheduling and resource allocation to 

be invoked multiple times we can achieve better results in 

high register pressure scenarios which is shown in enclosed 

results. 

VI. CONCLUSION 

Results demonstrate that improvements introduced to 

invariant code motion optimization give overall much better 

performance results than the initial implementation. Also 

results for the proposed technique for controlling when to 

perform the optimization show that in cases of high pressure 

on registers compiler can successfully detect solution which 

gives the best performance in all test cases.  

Due to the fact that there are cases when the optimization 

introduces overhead in the generated code, described 

implementation can still be improved. This is true for cases 

when invariant code motion happens on HLIR and therefore 

one of the future improvements would be tracking the hoisted 

operands on HLIR and applying similar algorithm to the one 

described in this paper. However, that approach would 

probably have a larger impact on compilation time.   
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