

0

Abstract - Multi-robot systems can be considered as a suitable

platform for dangerous mission in accident situations. In this

paper we propose a multi-robot system with distributed

intelligence that can perform complex mission faster and more

reliable. Robots are connected to the cloud and can benefit from

the powerful computational, storage and communication

resources of the cloud, which processes and shares information.

Our robot team consists of one robot scout and two robot

manipulators with different sensory capabilities. The mission

goal is to, in conditions of limited resources and insufficient

information, collect enough data about accident situation,

identify the most critical points and calculate appropriate path of

robots in known or unknown environment where accident

occurred.

Index Terms – multi-robot system; cloud; distributed

intelligence; path planning.

I. INTRODUCTION

In modern robotics robots are supposed to be as much as

possible simple, energy efficient, low-cost, but still smart

enough to carry out individual and collective intelligence.

These two goals are normally contradictory to each other.

Cloud computing is a key enabler for solving these

challenges. The idea is to use the advantages of the cloud

technologies and to design and create architecture that will

increase the effectiveness of a multi-robot system.

Cloud robotics is a field of robotics that attempts to

incorporate cloud technologies centred on the benefits of

converged infrastructure and shared services for robotics [1 -

4]. Cloud platform presented in this paper can communicate

and control multiple types of robotic agents in complex

accident situation. In order to perform a mission

cooperatively, robots have to share the knowledge about the

accident and environment through the cloud [5].

II. SYSTEM OVERVIEW

The over-all architecture of the system and its components

is depicted in Figure 1. The intention of this architecture is to

provide powerful processing capabilities to a multi-robot

Novak Zagradjanin – University of Belgrade, Faculty of Electrical

Engineering, Ministry of Defence, Department for Defence Technologies,
Nemanjina 15, 11000 Belgrade, Serbia (e-mail:

zagradjaninnovak@gmail.com).

Aleksandar Rodic – University of Belgrade, Faculty of Electrical
Engineering, Institute Mihailo Pupin, Robotics Laboratory, Volgina 15,

11060 Belgrade, Serbia (e-mail: aleksandar.rodic@pupin.rs).

system, resource efficiency, interoperability and robustness

[6].

The robot team is heterogeneous and consists of one robot

scout and two robot manipulators. Robots are equipped with

sensors, communication, actuation and manipulation modules,

leaving all high level algorithms to the cloud.

Cloud is used as the support for multi-robot system and

enables sparing resources and sharing data among robots. It is

responsible for analyzing of accident situation, determining

the weight distribution of accident classes, making decision

about the most critical points, setting target destinations of

robot manipulators to the weight distribution of accident

classes and path planning of robots in complex and dynamic

environment. For path planning D* Lite algorithm is used.

Data base feeds cloud with information specific to a

particular accident and environment, as and other data

important for mission planning.

Fig. 1. The architecture of cloud-based multi-robot system.

III. D* LITE ALGORITHM

D* Lite belongs to a group of graph-based path planners. It

is an incremental algorithm that is efficient in dynamic

environments. It works by performing an A* search to

generate an initial solution. Then, when the map of terrain is

updated, it repairs its previous solution by reusing as much of

their previous search efforts as possible. As a result, it can be

orders of magnitude more efficient than replanning from

scratch every time the world model changes, as in the case of

A* algorithm. Pseudocode of D* Lite according to which we

implemented this algorithm in Matlab, can be found in [7].

We use S to denote the finite set of nodes in the graph,

succ(s) denotes the set of successor nodes of node s ∈ S, and

pred(s) denotes the set of predecessor nodes of s. For any pair

Cloud-based distributed intelligence

of robot team in complex accident situation

Novak Zagradjanin, Aleksandar Rodic

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. ROI1.4.1-5

https://en.wikipedia.org/wiki/Robotics
mailto:aleksandar.rodic@pupin.rs

of nodes s, s' ∈ S such that s' ∈ succ(s) we require the cost of

transitioning from s to s’ to be positive: 0 < c(s, s') ≤ ∞. Given

such a graph and two nodes sstart and sgoal, the task of a search

algorithm is to find a path from sstart to sgoal, as a sequence of

nodes {s0, s1,…, sк} such that s0 = sstart, sк = sgoal and for every

1 ≤ i ≤ k, s, si ∈ succ(si-1). This path defines a sequence of

valid transitions between nodes in the graph, and if the graph

accurately models the original problem, a robot can execute

the actions corresponding to these transitions to solve the

problem. The cost of the path is the sum of the costs of the

corresponding transitions. For any pair of nodes s, s’ ∈ S we

let c*(s, s') denote the cost of a least-cost path from s to s'. For

s = s' we define c*(s, s') = 0.

The goal of shortest path search algorithms such as A*

search is to find a path from sstart to sgoal whose cost is

minimal, i.e. equal to c*(sstart, sgoal). Suppose for every node s

∈ S we knew the cost of a least-cost path from sstart to s, that

is, c*(sstart, s). We use g(s) to denote this cost. Then a least-

cost path from sstart to sgoal can be re-constructed in a

backward fashion as follows: start at sgoal, and at any node si

pick a node si-1 = arg mins'∈pred(si)(g(s') + c(s', si)) until si-1 =

sstart.

In particular, A* maintains g-values for each node it has

visited so far, where g(s) is always the cost of the best path

found so far from sstart to s. If no path to s has been found yet

then g(s) is assumed to be ∞ (this includes the nodes that have

not yet been visited by the search). A* starts by setting g(sstart)

to 0 and processing (hereinafter this process we call as node

expansion) this node first. The expansion of node s involves

checking if a path to any successor node s' of s can be

improved by going through node s, and if so then setting the

g-value of s' to the cost of the new path found and making it a

candidate for future expansion. This way, s' will also be

selected for expansion at some point and the cost of the new

path will be propagated to its children.

A* maintains four functions from nodes to real numbers:

- g(s) is the the minimum cost of moving from the start node

to s found so far;

- h(s) (heuristic value) estimates the minimum cost of moving

from s to sgoal of a search;

- f(s) = g(s) + h(s) or key value is an estimate of the minimum

cost of moving from the start node via s to the goal node;

- The parent pointer parent(s) points to one of the predecessor

nodes s' of s from which is derived g(s) and s' is called the

parent of s. The parent pointers are used to extract the path

after the search terminates.

A* also maintains a priority queue, OPEN, of nodes which

it plans to expand. In order to explain the purpose of forming

priority queue, let us first introduce a notion of local

inconsistency. A node is called locally inconsistent every time

its g-value is decreased and until the next time the node is

expanded. Suppose that node s is the best predecessor for

some node s': that is, g(s') = mins''∈pred(s')(g(s'')) + c(s'', s')) =

g(s) + c(s, s'). Then, if g(s) decreases we get g(s') >

mins''∈pred(s')(g(s'')) + c(s'', s')). In other words, the decrease in

g(s) introduces a local inconsistency between the g-value of s

and the g-values of its successors. Whenever s is expanded, on

the other hand, the inconsistency of s is corrected by re-

evaluating the g-values of the successors of s. This in turn

makes the successors of s locally inconsistent. In this way the

local inconsistency is propagated to the children of s via a

series of expansions. Given this definition of local

inconsistency it is clear that the OPEN list consists of exactly

locally inconsistent nodes. The OPEN queue is sorted by f(s),

so that A* always expands next the node which appears to be

on the shortest path from start to goal. A* initializes the

OPEN list with the start node, sstart. Each time it expands a

node s, it removes s from OPEN. It then updates the g-values

of all of s’s neighbors; if it decreases g(s'), it inserts s' into

OPEN.

Main()

01. for all s ∈ S
02. g(s) = ∞;

03. g(sstart) = 0;

04. OPEN = ∅;
05. insert sstart into OPEN with value f(sstart) = (g(sstart) + h(sstart));
06. ComputeShortestPath();

ComputeShortestPath()

07. while (sgoal is not expanded)
08. remove s with the smallest value f(s) from OPEN;

09. for all s' ∈ succ(s)
10. if (g(s') > g(s) + c(s, s'))

11. g(s') = g(s) + c(s, s');
12. parent (s') = s;

13. insert s' into OPEN with new value f(s') = (g(s') + h(s'));

Fig. 2. A* algorithm (simplified forwards version)

The challenge for shortest path search algorithms is to

minimize the amount of processing. The A* algorithm whose

simplified pseudocode is presented in Figure 2 expands all

nodes from OPEN while sgoal is not expanded. Using h-values

focuses the search on the nodes through which the whole path

from sstart to sgoal looks promising. It can be much more

efficient than expanding all nodes whose g-values are smaller

than or equal to g(sgoal), which is required by Dijkstra’s

algorithm to guarantee that the solution it finds is optimal.

The above approaches work well for planning an initial

path through a known graph or planning space. However,

when operating in real world scenarios, robots typically do not

have perfect information. Rather, they may be equipped with

incomplete or inaccurate planning graphs. In such cases, any

path generated using the robot’s initial graph may turn out to

be invalid as it receives updated information. For example, the

robot may be equipped with an onboard sensor that provides

updated environment information as the robot moves. It is

thus important that the robot is able to update its graph and

replan new paths when new information arrives. One

approach for performing this replanning is simply to replan

from scratch: given the updated graph, a new optimal path can

be planned from the robot position to the goal using A*,

exactly as described above. However, replanning from scratch

every time the graph changes can be very computationally

expensive.

D* Lite is extension of A* able to cope with changes to the

graph used for planning. D* Lite initially constructs an

optimal solution path from the initial node to the goal node in

exactly the same manner as backwards A* (i.e. search is

performed from sgoal to sstart). D* Lite maintains for each node

two values estimating path cost to the goal, which it uses to

propagate path costs between neighboring nodes in the space.

Each node has a base path cost estimate g, along with another

estimate called rhs that represents the path cost estimate

derived from looking at the g values of its neighbors: rhs(s) =

mins→t exists (c(s, t) + g(t)) or zero if s is the goal node. In

implementation, each node maintains a pointer to the node

from which it derives its rhs value.

When the algorithm has updated the pointers, the formula

for rhs indicates that the robot should follow the pointer from

its current node to pursue an optimal path to the goal. A node

is called consistent if its g and rhs values are equal. It is called

overconsistent if g > rhs and underconsistent if g < rhs. Each

non-goal node starts with its g value equal to ∞. When the g

values of neighboring nodes are lowered (to a finite path cost

estimate), the rhs value of the node is lowered, making it

overconsistent. If at some point the g values of neighboring

nodes are raised (an increase in the path cost estimate from

those nodes), the node may have its rhs value raised, which

may make it underconsistent. Inconsistent nodes eventually

trigger updates in their neighbors, hence overconsistent nodes

propagate path cost reductions through a region, while

underconsistent nodes propagate path cost enlargements

through a region.

Like A*, D* Lite uses a heuristic to focus its search and to

order its cost updates efficiently. D* Lite also maintains an

OPEN list of inconsistent nodes to be expanded in the current

search iteration. At each step it expands the node on the

OPEN list with the minimum key value. The priority, or key

value, of a node s in the queue is: key(s) = [k1(s), k2(s)] =

[min(g(s),rhs(s)) + h(sstart,s),min(g(s),rhs(s))]. A lexicographic

ordering is used on the priorities, so that priority key(s) is less

than or equal to priority key(s'), denoted key(s) ≤ key(s'), if

k1(s) < k1(s') or both k1(s) = k1(s') and k2(s) ≤ k2(s').

When changes to the planning graph are made (i.e. the cost

of some edge is altered), the nodes whose paths to the goal are

immediately affected by these changes have their path costs

updated and are placed on the planning queue (OPEN list) to

propagate the effects of these changes to the rest of the node

space. In this way, only the affected portion of the node space

is processed when changes occur. Furthermore, D* Lite uses a

heuristic to further limit the nodes processed to only those

nodes whose change in path cost could have a bearing on the

path cost of the initial node. As a result, it can be up to two

orders of magnitude more efficient than planning from scratch

using A*. Finally, it is important to point out that D* Lite can

be pre-configured either to search for an optimal solution (ε =

1) or to search for a solution bounded by a fixed suboptimality

factor (ε > 1).

IV. SIMULATED SCENARIO

Scenario discussed in this paper implies that there occurred

a complex accident situation in partly known urban

environment. At the time T0 we do not have sufficient

information about the accident. It is only known that there

have occurred accident classes 1 and 2 over a wide area, with

non-uniform weight distribution of both classes.

Since we have limited resources, there is no possibility to

react appropriately to the entire area where the accident

occurred. Consequently, the mission goal is to explore

situation in detail, to analyze accident situation, to determine

the weight distribution of accident classes, to make decision

about the most critical points and to plan appropriate path of

robot scout and robot manipulators.

For the purpose of the mission planning, at the level of the

cloud the map of environment is discretized into cells of

appropriate dimensions. Every cell is approximated with one

node in graph. We model the graph as 8-connected: each node

is connected to its horizontal, vertical and diagonal neighbors.

Robot scout is used primarily for exploring accident

situation, but and environment near the accident. In general it

is UAV. It is lighter and faster than robot manipulators. Also

it has better sensory capabilities and it can to classify

accidents in classes with the required spatial resolution in the

area of interest, as well as to determine the weight of accident

classes with the same spatial resolution.

Robot manipulators are UGVs equipped with appropriate

equipment for manipulation, for instance one for fire

extinguisher and other for clearing the rubble. They have

sensors for detecting surroundings in order to enable obstacle

avoidance and appropriate behavior related to the

manipulation itself.

All three robots begin their mission at the time T0,

assuming that the robot scout is previously sent to the area of

the accident (UAV). The robot scout perform exploring of the

accident situation, while robot manipulators move toward the

target destination assigned in relation to the weight

distribution of accident by classes defined on data known in

T0.

When the robot scout completes its task, updating of weight

distribution of the accident classes is done based on new

information and after that updating of the target destination of

robot manipulators is performed. We define this moment as

Tupdate.

The cloud support multi-robot system. It is responsible for

centralized integration of information about the accident

situation and the environment known in the T0 and collected

from all three robots during the mission, determining and

updating of the weight distribution of accident classes, setting

target destinations of robot manipulators to the actual weight

distribution of accident classes and path planning and

replanning for robots.

V. SIMULATION RESULTS

In Figure 3 example of mission profile for stochastically

generated start positions of robot manipulators, environment

(obstacles and free cells) and accident (accident classes and

weight) situation is presented.

There are highlighted the positions of the robots in

characteristic moments T0, Tupdate and Tfinal. The dashed lines

show the paths of the robots calculated by the planner in the

cloud based on the limited information available at the time

T0, along which robots start their movement in order to

minimize waste of time.

At the moment Tupdate robot scout has completed its mission

and on the basis of information that it collected and forwarded

to the cloud additional analysis of accident situations is

carried out. The weight distribution of the accident classes

now is updated, after which the positions of most critical

points are corrected as and appropriate target destination of

robot manipulators. The dotted lines show the paths of the

robots calculated by the planner at the moment Tupdate.

Final paths reconsctructed at the moment Tfinal (when robots

arrived at the target destinations) are showed with solid lines.

Looking at the paths between the moments Tupdate and Tfinal it

can be noticed that the solid lines do not coincide fully with

the dotted lines. This is because the environment in that part is

the most complex. Since the map of the terrain at the level of

the cloud is formed on an incremental basis in accordance

with the dynamics of collecting information with sensors of

the robots, when changes are detected the planner repairs its

previous solutions by reusing as much of its previous search

efforts as possible.

Fig. 3. Mission profile for stochastically generated start positions of robot

manipulators, environment and accident situation.

In accordance with the above mentioned it is important to

emphasize the importance of cloud in terms of fusion of

information about the accident situation and the environment

known at the T0 and collected from all three robots during the

mission. In this way, more reliable analysis of the accident

situation is provided, as well as more effective mission

planning and optimization of path of robots.

In Figures 4 and 5 two potential extreme situations of the

environment are presented. It can be seen that, in all other

equal conditions, planner makes the decision to correct the

paths of robot manipulators based on the common knowledge

base about the environment much earlier compared to the

planning on the basis of knowledge only of the individual

robots and thus significantly reduces the time of movement

from the start to the target destination.

Fig. 4. Path planning of multi-robot system based on individual and common

knowledge about the environment – example 1.

Fig. 5. Path planning of multi-robot system based on individual and common

knowledge about the environment – example 2.

VI. CONCLUSION

In this paper we presented cloud-based distributed

intelligence of robot team in complex accident situation.

Cloud platform shifts computation load from agents to the

cloud and provides powerful processing capabilities to the

multi-robot system. This allows the onboard systems of the

robots are greatly reduced, keeping only sensors,

communication, actuation and manipulation modules.

Proposed approach use path planning algorithm that can

operate in environment that is unknown in advance. Besides,

the algorithm is adapted for using the common knowledge

base about the environment, enabling more efficient paths

searching.

The main disadvantage of the system is sensitivity of the

communication loss.

REFERENCES

[1] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, Z. Liu, H.I. Christensen,
and F. Dellaert, “Multi Robot Object-based SLAM”, Int. Symposium on

Experimental Robotics (ISER), 2016.

[2] P. Benavidez, M. Muppidi, P. Rad, J. Prevost, M. Jamshidi, L. Brown,
“Cloud-based realtime robotic Visual SLAM”, Proceedings of 9th

Annual IEEE International Systems Conference, SysCon 2015.

[3] H. He, S. Kamburugamuve, G. Fox, W. Zhao, “Cloud based Real-time
Multi-robot Collision Avoidance for Swarm Robotics”, International

Journal of Grid and Distributed Computing Vol. 9, No. 6, pp.339-358,

2016.

[4] D. Hunziker, M. Gajamohan, M. Waibel and R. D’Andrea, “Rapyuta:

The RoboEarth Cloud Engine”, Proceedings - IEEE International

Conference on Robotics and Automation, 5/2013.

[5] M. Eich, R. Hartanto, “Fuzzy-DL Perception for Multi-Robot Systems”,

Proceedings of the International Symposium on Artificial Intelligence,

Robotics and Automation in Space (i-SAIRAS 2014), June 17-19,
Montreal, Canada, 6/2014.

[6] I. Osunmakinde, R. Vikash, “Development of a survivable cloud multi-

robot framework for heterogeneous environments”, International
Journal of Advanced Robotic Systems 11, 2014.

[7] S. Koenig, M. Likhachev, “D* Lite”, Eighteenth National Conference

on Artificial Intelligence (AAAI), pp. 476-483, 2002

https://utsa.influuent.utsystem.edu/en/persons/patrick-benavidez
https://utsa.influuent.utsystem.edu/en/persons/mohammad-jamshidi
https://www.researchgate.net/journal/1050-4729_Proceedings-IEEE_International_Conference_on_Robotics_and_Automation
https://www.researchgate.net/journal/1050-4729_Proceedings-IEEE_International_Conference_on_Robotics_and_Automation
https://scholar.google.com/citations?view_op=view_citation&hl=sr&user=44-GEb8AAAAJ&citation_for_view=44-GEb8AAAAJ:roLk4NBRz8UC
https://scholar.google.com/citations?view_op=view_citation&hl=sr&user=44-GEb8AAAAJ&citation_for_view=44-GEb8AAAAJ:roLk4NBRz8UC

