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Abstract - Multi-robot systems can be considered as a suitable 

platform for dangerous mission in accident situations. In this 

paper we propose a multi-robot system with distributed 

intelligence that can perform complex mission faster and more 

reliable. Robots are connected to the cloud and can benefit from 

the powerful computational, storage and communication 

resources of the cloud, which processes and shares information. 

Our robot team consists of one robot scout and two robot 

manipulators with different sensory capabilities. The mission 

goal is to, in conditions of limited resources and insufficient 

information, collect enough data about accident situation, 

identify the most critical points and calculate appropriate path of 

robots in known or unknown environment where accident 

occurred. 

 

Index Terms – multi-robot system; cloud; distributed 

intelligence; path planning.  

I. INTRODUCTION 

In modern robotics robots are supposed to be as much as 

possible simple, energy efficient, low-cost, but still smart 

enough to carry out individual and collective intelligence. 

These two goals are normally contradictory to each other. 

Cloud computing is a key enabler for solving these 

challenges. The idea is to use the advantages of the cloud 

technologies and to design and create architecture that will 

increase the effectiveness of a multi-robot system. 

Cloud robotics is a field of robotics that attempts to 

incorporate cloud technologies centred on the benefits of 

converged infrastructure and shared services for robotics [1 - 

4]. Cloud platform presented in this paper can communicate 

and control multiple types of robotic agents in complex 

accident situation. In order to perform a mission 

cooperatively, robots have to share the knowledge about the 

accident and environment through the cloud [5]. 

II. SYSTEM OVERVIEW 

The over-all architecture of the system and its components 

is depicted in Figure 1. The intention of this architecture is to 

provide powerful processing capabilities to a multi-robot 
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system, resource efficiency, interoperability and robustness 

[6].  

The robot team is heterogeneous and consists of one robot 

scout and two robot manipulators. Robots are equipped with 

sensors, communication, actuation and manipulation modules, 

leaving all high level algorithms to the cloud. 

Cloud is used as the support for multi-robot system and 

enables sparing resources and sharing data among robots. It is 

responsible for analyzing of accident situation, determining 

the weight distribution of accident classes, making decision 

about the most critical points, setting target destinations of 

robot manipulators to the weight distribution of accident 

classes and path planning of robots in complex and dynamic 

environment. For path planning D* Lite algorithm is used. 

Data base feeds cloud with information specific to a 

particular accident and environment, as and other data 

important for mission planning.  

 

 
 

Fig. 1. The architecture of cloud-based multi-robot system. 

III. D* LITE ALGORITHM 

D* Lite belongs to a group of graph-based path planners. It 

is an incremental algorithm that is efficient in dynamic 

environments. It works by performing an A* search to 

generate an initial solution. Then, when the map of terrain is 

updated, it repairs its previous solution by reusing as much of 

their previous search efforts as possible. As a result, it can be 

orders of magnitude more efficient than replanning from 

scratch every time the world model changes, as in the case of 

A* algorithm. Pseudocode of D* Lite according to which we 

implemented this algorithm in Matlab, can be found in [7]. 

We use S to denote the finite set of nodes in the graph, 

succ(s) denotes the set of successor nodes of node s ∈ S, and 

pred(s) denotes the set of predecessor nodes of s. For any pair 
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of nodes s, s' ∈ S such that s' ∈ succ(s) we require the cost of 

transitioning from s to s’ to be positive: 0 < c(s, s') ≤ ∞. Given 

such a graph and two nodes sstart and sgoal, the task of a search 

algorithm is to find a path from sstart to sgoal, as a sequence of 

nodes {s0, s1,…, sк} such that s0 = sstart, sк = sgoal and for every 

1 ≤ i ≤ k, s, si ∈ succ(si-1). This path defines a sequence of 

valid transitions between nodes in the graph, and if the graph 

accurately models the original problem, a robot can execute 

the actions corresponding to these transitions to solve the 

problem. The cost of the path is the sum of the costs of the 

corresponding transitions. For any pair of nodes s, s’ ∈ S we 

let c*(s, s') denote the cost of a least-cost path from s to s'. For 

s = s' we define c*(s, s') = 0. 

The goal of shortest path search algorithms such as A* 

search is to find a path from sstart to sgoal whose cost is 

minimal, i.e. equal to c*(sstart, sgoal). Suppose for every node s 

∈ S we knew the cost of a least-cost path from sstart to s, that 

is, c*(sstart, s). We use g(s) to denote this cost. Then a least-

cost path from sstart to sgoal can be re-constructed in a 

backward fashion as follows: start at sgoal, and at any node si 

pick a node si-1 = arg mins'∈pred(si)(g(s') + c(s', si)) until si-1 = 

sstart. 

In particular, A* maintains g-values for each node it has 

visited so far, where g(s) is always the cost of the best path 

found so far from sstart to s. If no path to s has been found yet 

then g(s) is assumed to be ∞ (this includes the nodes that have 

not yet been visited by the search). A* starts by setting g(sstart) 

to 0 and processing (hereinafter this process we call as node 

expansion) this node first. The expansion of node s involves 

checking if a path to any successor node s' of s can be 

improved by going through node s, and if so then setting the 

g-value of s' to the cost of the new path found and making it a 

candidate for future expansion. This way, s' will also be 

selected for expansion at some point and the cost of the new 

path will be propagated to its children.  

A* maintains four functions from nodes to real numbers: 

- g(s) is the the minimum cost of moving from the start node 

to s found so far; 

- h(s) (heuristic value) estimates the minimum cost of moving 

from s to sgoal of a search; 

- f(s) = g(s) + h(s) or key value is an estimate of the minimum 

cost of moving from the start node via s to the goal node; 

- The parent pointer parent(s) points to one of the predecessor 

nodes s' of s from which is derived g(s) and s' is called the 

parent of s. The parent pointers are used to extract the path 

after the search terminates. 

A* also maintains a priority queue, OPEN, of nodes which 

it plans to expand. In order to explain the purpose of forming 

priority queue, let us first introduce a notion of local 

inconsistency. A node is called locally inconsistent every time 

its g-value is decreased and until the next time the node is 

expanded. Suppose that node s is the best predecessor for 

some node s': that is, g(s') = mins''∈pred(s')(g(s'')) + c(s'', s')) = 

g(s) + c(s, s'). Then, if g(s) decreases we get g(s') > 

mins''∈pred(s')(g(s'')) + c(s'', s')). In other words, the decrease in 

g(s) introduces a local inconsistency between the g-value of s 

and the g-values of its successors. Whenever s is expanded, on 

the other hand, the inconsistency of s is corrected by re-

evaluating the g-values of the successors of s. This in turn 

makes the successors of s locally inconsistent. In this way the 

local inconsistency is propagated to the children of s via a 

series of expansions. Given this definition of local 

inconsistency it is clear that the OPEN list consists of exactly 

locally inconsistent nodes. The OPEN queue is sorted by f(s), 

so that A* always expands next the node which appears to be 

on the shortest path from start to goal. A* initializes the 

OPEN list with the start node, sstart. Each time it expands a 

node s, it removes s from OPEN. It then updates the g-values 

of all of s’s neighbors; if it decreases g(s'), it inserts s' into 

OPEN. 

 
Main() 

01. for all s ∈ S 
02.    g(s) = ∞; 

03. g(sstart) = 0; 

04. OPEN = ∅; 
05. insert sstart into OPEN with value f(sstart) = (g(sstart) + h(sstart)); 
06. ComputeShortestPath(); 

ComputeShortestPath() 

07. while (sgoal is not expanded) 
08.    remove s with the smallest value f(s) from OPEN; 

09.    for all s' ∈ succ(s) 
10.       if (g(s') > g(s) + c(s, s')) 

11.          g(s') = g(s) + c(s, s'); 
12.          parent (s') = s; 

13.          insert s' into OPEN with new value f(s') = (g(s') + h(s')); 
 

Fig. 2. A* algorithm (simplified forwards version) 
 

The challenge for shortest path search algorithms is to 

minimize the amount of processing. The A* algorithm whose 

simplified pseudocode is presented in Figure 2 expands all 

nodes from OPEN while sgoal is not expanded. Using h-values 

focuses the search on the nodes through which the whole path 

from sstart to sgoal looks promising. It can be much more 

efficient than expanding all nodes whose g-values are smaller 

than or equal to g(sgoal), which is required by Dijkstra’s 

algorithm to guarantee that the solution it finds is optimal. 

The above approaches work well for planning an initial 

path through a known graph or planning space. However, 

when operating in real world scenarios, robots typically do not 

have perfect information. Rather, they may be equipped with 

incomplete or inaccurate planning graphs. In such cases, any 

path generated using the robot’s initial graph may turn out to 

be invalid as it receives updated information. For example, the 

robot may be equipped with an onboard sensor that provides 

updated environment information as the robot moves. It is 

thus important that the robot is able to update its graph and 

replan new paths when new information arrives. One 

approach for performing this replanning is simply to replan 

from scratch: given the updated graph, a new optimal path can 

be planned from the robot position to the goal using A*, 

exactly as described above. However, replanning from scratch 

every time the graph changes can be very computationally 

expensive.  

D* Lite is extension of A* able to cope with changes to the 

graph used for planning. D* Lite initially constructs an 

optimal solution path from the initial node to the goal node in 

exactly the same manner as backwards A* (i.e. search is 

performed from sgoal to sstart). D* Lite maintains for each node 

two values estimating path cost to the goal, which it uses to 

propagate path costs between neighboring nodes in the space. 



 

Each node has a base path cost estimate g, along with another 

estimate called rhs that represents the path cost estimate 

derived from looking at the g values of its neighbors: rhs(s) = 

mins→t exists (c(s, t) + g(t)) or zero if s is the goal node. In 

implementation, each node maintains a pointer to the node 

from which it derives its rhs value.  

When the algorithm has updated the pointers, the formula 

for rhs indicates that the robot should follow the pointer from 

its current node to pursue an optimal path to the goal. A node 

is called consistent if its g and rhs values are equal. It is called 

overconsistent if g > rhs and underconsistent if g < rhs. Each 

non-goal node starts with its g value equal to ∞. When the g 

values of neighboring nodes are lowered (to a finite path cost 

estimate), the rhs value of the node is lowered, making it 

overconsistent. If at some point the g values of neighboring 

nodes are raised (an increase in the path cost estimate from 

those nodes), the node may have its rhs value raised, which 

may make it underconsistent. Inconsistent nodes eventually 

trigger updates in their neighbors, hence overconsistent nodes 

propagate path cost reductions through a region, while 

underconsistent nodes propagate path cost enlargements 

through a region. 

Like A*, D* Lite uses a heuristic to focus its search and to 

order its cost updates efficiently. D* Lite also maintains an 

OPEN list of inconsistent nodes to be expanded in the current 

search iteration. At each step it expands the node on the 

OPEN list with the minimum key value. The priority, or key 

value, of a node s in the queue is: key(s) = [k1(s), k2(s)] = 

[min(g(s),rhs(s)) + h(sstart,s),min(g(s),rhs(s))]. A lexicographic 

ordering is used on the priorities, so that priority key(s) is less 

than or equal to priority key(s'), denoted key(s) ≤ key(s'), if 

k1(s) < k1(s') or both k1(s) = k1(s') and k2(s) ≤ k2(s').  

When changes to the planning graph are made (i.e. the cost 

of some edge is altered), the nodes whose paths to the goal are 

immediately affected by these changes have their path costs 

updated and are placed on the planning queue (OPEN list) to 

propagate the effects of these changes to the rest of the node 

space. In this way, only the affected portion of the node space 

is processed when changes occur. Furthermore, D* Lite uses a 

heuristic to further limit the nodes processed to only those 

nodes whose change in path cost could have a bearing on the 

path cost of the initial node. As a result, it can be up to two 

orders of magnitude more efficient than planning from scratch 

using A*. Finally, it is important to point out that D* Lite can 

be pre-configured either to search for an optimal solution (ε = 

1) or to search for a solution bounded by a fixed suboptimality 

factor (ε > 1). 

IV. SIMULATED SCENARIO 

Scenario discussed in this paper implies that there occurred 

a complex accident situation in partly known urban 

environment. At the time T0 we do not have sufficient 

information about the accident. It is only known that there 

have occurred accident classes 1 and 2 over a wide area, with 

non-uniform weight distribution of both classes. 

Since we have limited resources, there is no possibility to 

react appropriately to the entire area where the accident 

occurred. Consequently, the mission goal is to explore 

situation in detail, to analyze accident situation, to determine 

the weight distribution of accident classes, to make decision 

about the most critical points and to plan appropriate path of 

robot scout and robot manipulators. 

For the purpose of the mission planning, at the level of the 

cloud the map of environment is discretized into cells of 

appropriate dimensions. Every cell is approximated with one 

node in graph. We model the graph as 8-connected: each node 

is connected to its horizontal, vertical and diagonal neighbors. 

Robot scout is used primarily for exploring accident 

situation, but and environment near the accident. In general it 

is UAV. It is lighter and faster than robot manipulators. Also 

it has better sensory capabilities and it can to classify 

accidents in classes with the required spatial resolution in the 

area of interest, as well as to determine the weight of accident 

classes with the same spatial resolution. 

Robot manipulators are UGVs equipped with appropriate 

equipment for manipulation, for instance one for fire 

extinguisher and other for clearing the rubble. They have 

sensors for detecting surroundings in order to enable obstacle 

avoidance and appropriate behavior related to the 

manipulation itself.  

All three robots begin their mission at the time T0, 

assuming that the robot scout is previously sent to the area of 

the accident (UAV). The robot scout perform exploring of the 

accident situation, while robot manipulators move toward the 

target destination assigned in relation to the weight 

distribution of accident by classes defined on data known in 

T0. 

When the robot scout completes its task, updating of weight 

distribution of the accident classes is done based on new 

information and after that updating of the target destination of 

robot manipulators is performed. We define this moment as 

Tupdate. 

The cloud support multi-robot system. It is responsible for 

centralized integration of information about the accident 

situation and the environment known in the T0 and collected 

from all three robots during the mission, determining and 

updating of the weight distribution of accident classes, setting 

target destinations of robot manipulators to the actual weight 

distribution of accident classes and path planning and 

replanning for robots. 

V. SIMULATION RESULTS 

In Figure 3 example of mission profile for stochastically 

generated start positions of robot manipulators, environment 

(obstacles and free cells) and accident (accident classes and 

weight) situation is presented. 

There are highlighted the positions of the robots in 

characteristic moments T0, Tupdate and Tfinal. The dashed lines 

show the paths of the robots calculated by the planner in the 

cloud based on the limited information available at the time 

T0, along which robots start their movement in order to 

minimize waste of time. 

At the moment Tupdate robot scout has completed its mission 

and on the basis of information that it collected and forwarded 

to the cloud additional analysis of accident situations is 

carried out. The weight distribution of the accident classes 

now is updated, after which the positions of most critical 

points are corrected as and appropriate target destination of 



 

robot manipulators. The dotted lines show the paths of the 

robots calculated by the planner at the moment Tupdate. 

Final paths reconsctructed at the moment Tfinal (when robots 

arrived at the target destinations) are showed with solid lines. 

Looking at the paths between the moments Tupdate and Tfinal it 

can be noticed that the solid lines do not coincide fully with 

the dotted lines. This is because the environment in that part is 

the most complex. Since the map of the terrain at the level of 

the cloud is formed on an incremental basis in accordance 

with the dynamics of collecting information with sensors of 

the robots, when changes are detected the planner repairs its 

previous solutions by reusing as much of its previous search 

efforts as possible. 

 

 
 

Fig. 3. Mission profile for stochastically generated start positions of robot 

manipulators, environment and accident situation. 

 

In accordance with the above mentioned it is important to 

emphasize the importance of cloud in terms of fusion of 

information about the accident situation and the environment 

known at the T0 and collected from all three robots during the 

mission. In this way, more reliable analysis of the accident 

situation is provided, as well as more effective mission 

planning and optimization of path of robots. 

In Figures 4 and 5 two potential extreme situations of the 

environment are presented. It can be seen that, in all other 

equal conditions, planner makes the decision to correct the 

paths of robot manipulators based on the common knowledge 

base about the environment much earlier compared to the 

planning on the basis of knowledge only of the individual 

robots and thus significantly reduces the time of movement 

from the start to the target destination. 

 

 

 
 

Fig. 4. Path planning of multi-robot system based on individual and common 

knowledge about the environment – example 1. 

 

 
 

Fig. 5. Path planning of multi-robot system based on individual and common 

knowledge about the environment – example 2. 

VI. CONCLUSION 

In this paper we presented cloud-based distributed 

intelligence of robot team in complex accident situation. 

Cloud platform shifts computation load from agents to the 

cloud and provides powerful processing capabilities to the 

multi-robot system. This allows the onboard systems of the 

robots are greatly reduced, keeping only sensors, 

communication, actuation and manipulation modules. 

Proposed approach use path planning algorithm that can 

operate in environment that is unknown in advance. Besides, 

the algorithm is adapted for using the common knowledge 

base about the environment, enabling more efficient paths 

searching. 

The main disadvantage of the system is sensitivity of the 

communication loss. 
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