
  

Abstract—An investigation about tunneling times in complex 

potentials is reported. Analyzed potential structure consists out 

of complex double Dirac delta potential barriers and analytical 

expressions for dwell time, self-interference time and group delay 

are obtained. It is stated that appropriate values for the set of 

parameters of the potential can be acquired in order for the 

tunneling times to achieve very large values and even approach 

infinity for the case of resonance. The conditions for the 

occurrence of tunneling times singularities, which will be given, 

are satisfied for only one particular positive value of the 

imaginary part of the potential, if all other parameters are 

known.  

Index Terms—infinite tunneling times, double potential 

barrier, complex potentials, transmission.  

I. INTRODUCTION

Let us consider a case where a free particle impinges a 

potential barrier, with value of the potential higher than the 

energy of the particle. A finite, non-vanishing probability for 

the particle to overcome the barrier is implied by the quantum 

mechanics (i.e. the tunneling effect). Electron tunneling 

through double barrier structure has been the subject of 

intensive theoretical and experimental study over the years 

due to its application in high speed electronic devices. 

Possibly the most important feature of the tunneling effect is 

the time which electrons take to go through the barrier, i.e. the 

traversal time. Throughout the past, there have been presented 

many definitions and solutions to the question of tunneling 

times [1-9] and none have gained general approval yet. 

However, among many formulations of relevant times, the 

two most commonly used are [10]: the dwell time, which is 

the time a particle spends in the barrier, independent on 

whether it is transmitted or reflected; and the phase time or 

group delay which considers the propagation of a wave 

packet. Until some insight was given in [11-12], it was not 

clear whether the dwell time and group delay are connected 

with each other under the quantum tunneling conditions, other 

than they have the same asymptotic value in classical domain. 

In [13] it was shown that sum of the dwell time and the self-
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interference time is equal to the group delay, which led to the 

explanation of the paradox of the Hartmann effect [14] in 

quantum tunneling and alleged violation of causality. 

In quantum mechanics, a change of the incident probability 

flux during the wave propagation is modeled with potentials 

which have a non-vanishing imaginary part. The case of 

absorptive medium where we have reduction of the incident 

flux, corresponds to the potential with negative imaginary 

part, and conversely, the case where the absorption is negative 

and we have gain of the incident flux corresponds to the 

potential with positive imaginary part. Numerous effects are 

analyzed in this manner [15-18] and extensive review on 

complex potentials and absorption is given in [19-20]. The 

global tunneling time, which is equal to the sum of the semi-

classical traversal and group delay time, was analytically 

calculated for the first time in [21] for a complex square 

barrier.  

A study of the tunneling times in the case of two successive 

delta barriers with complex potential is reported in this paper. 

Analysis will primarily be focused on the group delay, also 

covering the case of resonant tunneling, which occurs when 

the energy of the metastable state which exists in the well 

region between the delta barriers coincides with the incident 

electron energy. The relation between group, dwell and self-

interference time, accounting one additional term originating 

from the non-vanishing imaginary part of the potential, which 

is valid for arbitrary complex potential, is obtained in [22]. 

The aim is to acquire analytical expressions for the relevant 

tunneling times in the case of double delta complex barrier. In 

our recent paper [23] we have shown that if the parameters of 

the potential structure are selected precisely, the resonant 

transmission approaches infinity when the incident electron 

energy is equal to the resonant metastable state. This 

phenomenon is possible only for positive values of the 

imaginary part of the potential. We will show that the 

tunneling times diverge for the same set of parameters and for 

the same energy. In [23] we have studied both double 

rectangular and delta barriers, but in this paper the analysis 

will be conducted only for the delta potentials, because it is 

impossible to obtain analytical expressions in the case of 

rectangular barriers, and at the same time identical 

conclusions can be made. The occurrence of infinite tunneling 

times will be the main subject of investigation in this paper. 

We will further show that this phenomenon also occurs for 

potentials with negative real part (i.e. potential wells) as long 

as the imaginary part is positive. 
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II. GENERAL CONSIDERATION

Consider a one-dimensional arbitral complex potential ��x� which occupies 0 < � < � part of the � axis, and���� = 0 for all other values of x. Let 	 = |	|��
�  and � =|�|��
� stand for transmission and reflection amplitudes

respectively. Definitions of group delay, self-interference-time 

and dwell time, can be found in [22]. 

The dwell time, i.e. the average total time the particle 

spends in the barrier, regardless of transmission or reflection, 

is given by following relation: 

�� = �ћ� � |����|��� ��,  (1) 

where m is the effective mass of the particle, � = ���ћ� � is

the wave number and ���� is the wave function.

Total group delay is the measure of the delay in appearance 

of the wave function at the front and the end of the potential 

barrier and it is calculated as the weighted sum of group 

delays in transmission � ! and reflection � ", which are

defined as: 

� ! = ћ �
#�$ ,  � " = ћ �
��$ ,  (2) 

where %� = %! + ��.
The group delays in transmission and reflection are only 

equal for a symmetric real barrier. The bidirectional delay is 

then given by: 

� = |	|�� ! + |�|�� "  (3) 

When the wave packet impinges the barrier, the total 

incident probability current is divided into transmitted and 

reflected current. As a consequence, the reflected wave packet 

overlaps with the incident in the area just before the barrier 

and they interfere with one another, hence we have self-

interference time [13], which is defined as: 

�� = − ћ� )*+�, -�-$  (4) 

where )*+�, is the imaginary part of the reflection amplitude.

Now we can finally arrive to the final relationship between 

the mentioned tunneling times [22]: 

� = �� + �� − ��ћ� � �.)* /�∗ �1�$ 2 ���� = �� + �� − �3 .  (5)

The last term �3 comes from a non-vanishing value of the

imaginary part of the potential ��. If the potential is strictly

real, we arrive to the well-known relation [13]: � = �� + �� .
III. DOUBLE DELTA POTENTIAL

We will further analyze double delta potential structure: 

���� = 4� 56 7� + 8� 9 + 6 7� − 8� 9:,  (6) 

which is a centralized symmetrical structure, and with 

complex potential in general case 4� = 4�; + <4�..
Let us investigate a free particle impinging the barrier from 

the left hand side. A wave function of the particle can be 

obtained after solving the Schrödinger’s equation: 

���� =
=>
? ���@ + ��A��@ , � < − 8�CD���@ + C��A��@ , − 8� < � < 8�	���@ ,   � > 8�

 .  (7) 

Expressions for reflection and transmission amplitudes, �
and 	 respectively, can be acquired in many ways, e.g.

transfer matrix method. After some calculations, we arrive to: 

	 = !#�
DA"#�GH�IJ,  (8) 

� = K��A��8 + !#�"#GHIJ
DA"#�GH�IJ.  (9) 

In the last two relations (8) and (9), K� and L� are reflection

and transmission amplitudes respectively corresponding to 

just one delta potential barrier defined as ���� = 4�6���. We

have taken into account that the barriers are identical and 

separated by the distance M. The expressions are acquired

after some simple calculations: 

K� = − NDON and L� = DDON,  (10) 

where P = Q*4�� 2ћ��⁄ .

It is not difficult to calculate the expressions for CD and C�
from relation (7) after using the condition of continuity of the 

wave function and appropriate condition for the first 

derivative of the wave function (as a consequence of 

considering delta potentials) in � = ± M 2⁄ :

CD = UGHIVJ �⁄ AGWHIJ �⁄ A;GHIJ �⁄
GHIVJ �⁄ AGWHIJ �⁄ , 

C� = ;GHIVJ �⁄ OGHIJ �⁄ AUGHIJ �⁄
GHIVJ �⁄ AGWHIJ �⁄ .  (11) 

We hope to calculate the group delay. An exact definition is 

given by (3) and the best approach would be to obtain � ! and� ". For the studied potential, this method would produce

complex expressions that would be hard to analyze. Smarter 

approach would be to obtain analytical relations for dwell 

time, self-interference time and the additional term (�3� and

combine them with relation (5).This can be done with relative 

ease. 

First, let us write the definition of self-interference time in a 

more suitable form, which we can use directly: 

�� = − ћ�$ )*+�,. (12)



Next, we can derive the expression for the dwell time using 

(1) and changing the domain of the integration to 7− 8� , 8� 9:

�� = �ћ� � XCD���@ + C��A��@X�J�AJ� �� = �ћ� � X|CD|� +J�AJ�|C�|� + 2��+CDC�∗����@,X� ��.

After some calculations we arrive to: 

�� = �8ћ� Y|CD|� + |C�|� + 2��+CDC�∗, Z[\ ��8��8 ].  (13) 

Ultimately, we obtain the expression for the additional term �3. Having in mind that �� = 4�. 56 7� + 8� 9 + 6 7� − 8� 9:
the integral in relation (5) transforms to the sum of two 

addends: 

�3 = ��^#_ћ� `)* 7�∗ �1�$9a@b8 �⁄ + )* 7�∗ �1�$ 9a@bA8 �⁄ c. (14)

It is possible to derive exact form of �3, but we will stop at

(14) in this paper because, otherwise, expressions would be

very complicated while at the same time not improving the

insight into the problem very much.

We can now finally show the values of the tunneling times 

depending on the values of incident energy � and imaginary

part of the potential 4�.as is shown in Figs. 1., 2. and 3. We

have focused on positive values of 4�. to show the tunneling

times singularities with more detail. Later in the paper we will 

investigate the case with negative 4�., i.e. an absorptive

medium. We used the following parameters: The distance 

between two delta barriers is M = 4nm, effective mass * =0.067 *� (*� electron rest mass) and real part of 4� is 4�; =2 nm ∙ eV.

Fig.1. Group delay �  (in units of l) as a function of the imaginary part of the 

potential 4�. (in units of  nm ∙ eV) and incident energy � (in units of meV).

Singularity occurs for 4�.�mn = 0.3921 nm ∙ eV and for energy ��mn =270 meV.

Fig.2. Dwell time �� (in units of l) as a function of the imaginary part of the

potential 4�. (in units of  nm ∙ eV) and incident energy � (in units of meV).

Singularity occurs for 4�.�mn = 0.3921 nm ∙ eV and for energy ��mn =270 meV.

Fig.3. Self-interference time �� (in units of l) as a function of the imaginary 

part of the potential 4�. (in units of  nm ∙ eV) and incident energy � (in units

of meV). Singularity occurs for 4�.�mn = 0.3921 nm ∙ eV and for energy ��mn = 270 meV.

In figs.1.-3. we can see that the tunneling times exhibit very 

intriguing behavior around the 4�. = 4�.�mn, which is the same

value of 4�. where we have infinite transmission [23], which

will be shown later. Resonant energy for the case 4�. = 4�.�mn
equals ��mn. Fig.1. depicts group delay as a function of 4�.
and �. We can see that around ��mn and for values of4�.slightly larger than 4�.�mn, the group delay reaches very

high values, and even approaches infinity for 4�. = 4�.�mn +r, r → 0O and for � = ��mn. These high values were not

shown on the picture deliberately, as they would obscure more 

subtle changes in values of � . Conversely, when 4�. is

slightly lower than 4�.�mn, we have very large negative value

of group delay, and they approach negative infinity when 



 

4�. = 4�.�mn − r, r → 0O and � = ��mn. Fig.2. shows the 

dwell time as a function of 4�. and �. From the definition of 

dwell time, it can be expected to observe only positive values 

of ��, and we can see that on fig.2. It can also be observed 

that for values of 4�. in the vicinity of 4�.�mn, �� has very 

large values, and approaches infinity for 4�. = 4�.�mn and for � = ��mn. Fig.3. depicts self-interference time as a function of 

the same variables as the previous two graphs. It too possesses 

singularities and exhibits similar behavior as the group delay 

depicted in fig.1. 

As stated before, for the same values of parameters for 

which the tunneling times exhibit singularities, the resonant 

transmission probability approaches infinity. The condition 

for resonance can be defined as [23]: 

 sin�2�M� = − vQv�Ow�,  cos�2�M� = − wQv�Ow�,           (15) 

 

where:  

 z = 2{�4�;4�.|4�;� − 4�.�} − 2{4�;4�. + 4{~ �� 4�;4�.� −2{�4�;4�.|4�;� − 4�.�} + 2{~ �� 4�;�4�;� − 4�.��, 

 � = 4{~ �� 4�.4�;� + {|4�;� − 4�.�} − {��4�;� − 4�.��� −2{~ �� 4�.|4�;� − 4�.�} − 4�{4�;4�.��.                                         (16) 

 

In the last eq. (16) { = Q* 2ћ��⁄ . Combining eqs. (8) and (15), it 

is possible to calculate transmission in the case of resonance for 

different values of the imaginary part of the potential. We have done 

so in fig.4. and it can clearly be observed that for 4�. = 4�.�mn the 

resonant transmission approaches infinity, thus showing that 

transmission and tunneling times singularities occur 

simultaneously. 

 
Fig.4. Resonant transmission probability as a function of the imaginary part 

of the potential 4�. (in units of  nm ∙ eV. 4�.�mn = 0.3921 nm ∙ eV and for 

energy ��mn = 270 meV. 

 

Our next goal is to show that the phenomenon of infinite 

tunneling times also exists in the case of potential wells, when 

4�; is negative. In [23] we have derived the equation which 

shows the relationship between 4�;, 4�. and � at the point of 

singularity (when 4�. = 4�.�mn and � = ��mn): 

 

4�; = � 4�.L� 7�8ћ� 4�.9 , �8ћ� 4�. ∈ 7��, �� + ��9
−4�.�L� 7�8ћ� 4�.9 , �8ћ� 4�. ∈ 7�� + �� , �� + �9,  (17) 

where � = 0,1,2 … for positive values of 4�.. 
Furthermore, if we know the value of 4�. we can calculate 

the resonant energy using the following equation, which also 

shows that infinite tunneling times occur only for positive 

values of the imaginary part of the potential: � = ��ћ� 4�.�.                                                                     (18) 

If we choose the potential with negative values of 4�;, we 

have potential wells instead of barriers and obtain the same 

relation as (17) only with ranges of values of 
�8ћ� 4�.  switched 

places with one another. In other words, for every value of 4�; we can find a corresponding value of 4�. so that for 

resonant energy transmission approaches infinity, and we 

have singularities in the tunneling times. For instance, if we 

choose 4�; = −2 nm ∙ eV,  from 4�; = 4�.L� 7�8ћ� 4�.9 we get 

that corresponding value of imaginary part of the potential is 4�. = 0.5195 �* ∙ �4. We kept the initial distance between 

the wells M = 4 �* and will do so for all calculations in this 

paper. This situation corresponds to the particle meeting a 

double delta potential well and the behavior of �  is 

qualitatively identical to the one depicted on fig.1. 

At last, we will plot the group delay as a function of  � and 

only negative values of 4�., i.e. we will be considering 

absorptive medium. We will study the case of particle meeting 

a double delta potential barrier (fig.5.). The case of double 

delta potential well is analogous and won't be shown in this 

paper. 

 
Fig.5. Group delay �  (in units of l) as a function of the imaginary part of the 

potential 4�. (in units of  nm ∙ eV) and incident energy � (in units of meV). 

Real part of 4�is 4�; = 2 nm ∙ eV .  
 

It can be seen on fig.5. that for absorptive media group 



 

delay has a finite maximum value for resonant energy and its 

value decreases as the energy moves away from the value of 

the resonant energy. It can also be observed that the maximum 

value of  �  is obtained for strictly real barriers. 

A few closing remarks will be given. Complex potentials 

are often used in calculations in quantum mechanics and have 

proven to be very useful. Potentials with negative imaginary 

part have found application in numerous problems, which is 

not the case for potentials with positive imaginary part which 

increase the probability current and represent a source. It is 

not wanted for an arbitrary state to be injected, so the analysis 

of the source potentials is more harder. Sources in electron 

transport devices such as quantum dots, nanoscale transistors 

and multi terminal devices are modeled in the mentioned way. 

We have analysed a double rectangular complex potential 

structure and its simplification in the form of double delta 

potential. This potential structure is based on electron 

transport devices e.g. resonant tunnel diode and hence has 

potential application. Transmission singularities have been 

reported earlier but only in PT-symmetric potentials [24]. 

However, the phenomenon of infinite transmission has not 

been reported for structures such as one analysed here, which 

are not PT-symmetric. Object of future research could be 

possible realisation of the potential structure. Such research 

would find application in high speed electronic devices. 

 

IV. CONCLUSION 

In this paper we considered a free particle meeting double 

complex delta potential. The analysis was directed at the case 

of positive imaginary part of the potential and at the 

investigation of the behavior of the tunneling times. We 

obtained the analytical expressions of the dwell time, self-

interference time and group time using the extended 

relationship between the mentioned times, which accounts the 

additional term originating from the imaginary part of the 

potential in general case. It has been demonstrated that for 

both the cases of potential barriers and potential wells, if the 

real part of the potential and distance between the barriers 

have fixed known values, we can always find a corresponding 

value of the imaginary part of the potential so that the 

tunneling times achieve very large values and diverge at the 

point of singularity, when energy of the particle is equal to the 

resonant energy. The conditions for the occurrence of this 

peculiar phenomenon are satisfied only for the positive values 

of the imaginary part of the potential. At the end, the behavior 

of the group delay as a function of the energy and imaginary 

part of the potential is briefly studied for the case of 

absorptive medium, where the imaginary part of the potential 

is negative, and it is shown that there are no conditions for the 

previously mentioned phenomenon to exist.  
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