



Abstract—This paper describes proposed system for real-time

data acquisition based on System on Chip with an FPGA and a

PC. Communication between the two runs over PCI Express bus.

Results show that this architecture enables high speed data

acquisition for a reasonable price which makes it commercially

viable.

Index Terms—PCI Express, FPGA, Real-time, SoC, data

acquisition

I. INTRODUCTION

Core functionality of measurement systems is data

acquisition. It represents collecting digital samples of

electrical signals produced by various sensors of real-world

physical properties such as temperature, force or light

intensity. These systems consist of sensors, analog to digital

converters, interface for connecting with a PC (USB, parallel

port, ISA, PCI, PCIe, RS-232, RS-485) and a PC itself,

running data acquisition software.

In this paper, the focus is on real-time data acquisition

systems, that is to say, systems where data collection is

executed periodically, in precisely defined intervals of time.

However, the system described here does contain non real-

time component, a PC, since it runs Windows or Linux

operating system which does not support real-time. The main

idea behind using PC in this kind of system is its already

powerful and ever-increasing hardware capabilities combined

with affordable price.

Some of the most notable interfaces for connecting

peripheral components with a PC are: parallel port, which was

used from the 1970s through the 2000s and, in its most

advanced version, had a 2.5 MB/s bit rate; RS-232 serial port

which was first introduced in 1960 and is still used to this day

(although its usage became limited to industrial machines and

scientific instruments); USB port, which was introduced in

mid-1990s, superseded serial and parallel ports and became

industry standard, providing transfer speeds up to 10000

Miloš Reljin is with RT-RK Institute for Computer Based Systems,

Narodnog Fronta 23a, 21000 Novi Sad, Serbia (email:

milos.reljin@rt-rk.com).
Nebojša U. Pjevalica is with the University of Novi Sad, Faculty of

Technical Sciences, Computing and Control Engineering dept., Trg Dositeja

Obradovića 6, 21000 Novi Sad, Serbia (phone: 381-21-4801298; email:

pjeva@uns.ac.rs)

Miloš Subotić is with the University of Novi Sad, Faculty of Technical

Sciences, Computing and Control Engineering dept., Trg Dositeja Obradovića
6, 21000 Novi Sad, Serbia and with RT-RK Institute for Computer Based

Systems, Narodnog Fronta 23a, 21000 Novi Sad, Serbia (phone: 381-21-

4801291; e-mail: milos.subotic@rt-rk.uns.ac.rs).

Mbits/s; ISA (IBM PC/AT) bus, created in 1981 by IBM, is

parallel bus with 8 or 16 bits width, later superseded by PCI

(Peripheral Component Interconnect) bus in 1992 which has

32 or 64 bits width and speeds up to 533 MB/s. Today’s PCs

use PCI Express bus. It has width from 1 to 32 bits and

provides speeds up to 31.51 GB/s (PCIe v4.0 x16).

Motivation for using PCI Express bus and such a large data

transfer speeds in data acquisition and measurement systems

lies in the fact that some of these systems can output

enormous amounts of data in a very short time, for example

complex multi-channel data acquisition systems, radar

systems or video recording and processing systems.

Considering its high throughput and commercial

availability, PCIe was chosen as an interface between a PC

and an FPGA (Field-Programmable Gate Array) board,

altogether forming a data acquisition and measurement

system.

Second chapter describes conceptual advantages of PCIe

bus usage in real-time data acquisition systems. Third chapter

presents the proposed system. Verification process is shown

in chapter four. Achieved data acquisition throughput rates

and FPGA resources utilization are summarized in chapter

five.

II. PCIE INTERFACE CHARACTERISTICS

As it was briefly mentioned in introduction, when selecting

an interface between a PC and a high speed peripheral, PCIe

comes up naturally, considering price to performance ratio.

PCI Express can be viewed as a network rather than a bus.

Each card in network has its physical connection to the switch

logic like in a local Ethernet network. Communication is done

via packets, also including flow control, error detection and

retransmissions. There are no MAC addresses but instead a

physical location of the card is used to define it, before its

address is allocated in the I/O space.

PCI Express uses four types of transactions [1]: memory

read/write (data transfers to or from memory mapped

locations), I/O read/write (data transfers to or from I/O

locations), configuration read/write (discovering device

capabilities) and messages (event signaling and general

purpose messaging).

Two types of interrupts are supported: legacy INTx and

MSI (Message Signaled Interrupts). INTx interrupts are

supported to allow bridging between PCI bus and PCI

Express. Since INTx had problems like interrupt sharing and

the need for each interrupt handling routine to check who

Design and Verification of FPGA High Speed

PCIe Real-Time Data Acquisition System

Miloš Reljin, RT-RK, Nebojša U. Pjevalica, Member, IEEE, Miloš Subotić, Student Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. MLI2.2.1-3

should actually handle the interrupt, MSI was introduced.

Here, interrupts are signaled by simply issuing a write request

to a specific address defined by the host inside peripheral’s

configuration space. The data value written this way indicates

which interrupt vector is asserting.

III. ARCHITECTURE OF PROPOSED PCIE ACQUISITION SYSTEM

One of the key system components is Xilinx Zynq-7000

SoC (System on Chip) which features dual-core ARM Cortex-

A9 processor and Kintex-7 FPGA. It is located on PCIe card

developed by RT-RK institute and it’s connected to onboard

DDR3 RAM module as well as peripherals like Ethernet port,

UART and video inputs. Xilinx provides a variety of IP

(Intellectual Property) cores for FPGA design that can be

easily instantiated and combined with user defined logic. One

of the provided IP cores greatly simplifies PCI Express

communication by implementing complete protocol handling.

User interaction is reduced to issuing addresses and providing

data over AXI-Full bus [3].

As shown in Figure 1, system block design consists of

Zynq7 PS (Processing System), AXI Memory Mapped To PCI

Express and AXI Interconnect IP cores provided by Xilinx,

and user defined IP cores int_gen and etran_ip. ARM

processor and DDR3 memory controller reside inside Zynq7

PS. AXI Memory Mapped To PCI Express is the IP core

mentioned before which implements PCIe protocol handling.

AXI Interconnect IPs are instantiated automatically by Xilinx

Vivado tool and their purpose is routing of AXI-Full buses

between components. User defined IP int_gen is used for

triggering message signaled interrupts to a PC while etran_ip

generates test data and passes it to AXI Memory Mapped To

PCI Express IP.

User IP cores and AXI Memory Mapped To PCI Express are

connected to the general purpose port 1 (M_AXI_GP1) of the

Zynq7 PS using AXI-Lite bus. This connection enables ARM

processor to see those components as memory-mapped

devices. AXI Memory Mapped To PCI Express (S_AXI port) is

additionally connected to the general purpose port 0

(M_AXI_GP0) of the Zynq7 Processing System which makes

a path for processor to read and write data to the PCI Express

bus. One last connection is from master bridge (M_AXI port)

of AXI Memory Mapped To PCI Express to the S_AXI_HP0

(high performance) port of Zynq7 PS.

Vivado VHDL synthesis report of proposed block design

shows low resource usage which leaves space for

implementing much more complex logic design. This fact

undoubtedly shows that it’s possible to include the logic for

processing acquired data on FPGA before passing it to a PC

via PCI Express if needed [6][7]. Resource usage report is

shown in table 1.

Resource Utilization Available Utilization %

FF 15000 157200 9.54

LUT 18288 78600 23.19

Memory LUT 448 26600 1.68

BRAM 19 256 7.17

Table 1 – FPGA resource usage

Table legend:

FF – Flip-Flop

LUT – Lookup Table

Memory LUT – Memory Lookup Table

BRAM – Block RAM

IV. VERIFICATION OF PROPOSED SYSTEM

Due to open source nature of GNU/Linux operating system,

it was selected for the PC host OS. It’s important to note that

this fact does not make the proposed system less portable

since it’s possible to implement the PC side software

relatively symmetrically on Microsoft Windows OS.

Verification process is designed with the idea to use simple

counter data sequence which is generated on Zynq SoC and

passed to a PC. Communication with PCI Express card on the

PC side is handled from Linux kernel device driver written by

the authors of this paper.

Upon loading the driver, it connects to the PCIe card by

using function pci_get_device provided with card specific

vendor and device identification numbers [4]. After enabling

the card, the driver gets the physical address of PCIe BAR0

(Base Address Register) using pci_resource_start function

[8]. Then it assigns virtual address to the BAR by calling

check_mem_region, request_mem_region and

io_remap_nocache functions. BAR space length is obtained

via pci_resource_len. At this point, the driver enables

message signaled interrupts by calling pci_enable_msi

Figure 1 - Vivado Block Design

function and registers its interrupt handler routine with

request_irq. The only thing left to do in initialization is to

allocate a contiguous block of physical memory by calling

pci_alloc_consistent and fill it with zeroes.

After the driver initialization is finished, test application

can issue IOCTL (I/O control) message to the driver which

represents a request for transfer start. When driver receives

the IOCTL message, it writes the physical address of allocated

buffer at the beginning of the memory that BAR0 is pointing

to. This space is actually inside RAM on the PCIe card and is

used as a configuration space for passing transfer parameters.

After writing the address, driver sets a flag in the next location

in configuration space which signals the request for transfer

start to the PCIe card and waits for interrupt from card. This

way, IOCTL command for transfer is implemented in a

blocking fashion.

On PCI Express card, ARM processor polls the location

with the mentioned flag in on-board RAM. When it detects

that a PC changed this location, it first resets the location’s

value and then sends a command via AXI-Lite bus to the

etran_ip module and polls it for transfer completion. This

module in turn generates test counter sequence and sends it

over AXI-Full bus to AXI Memory Mapped To PCI Express IP

core in bursts. The data is then written over PCI Express bus

into the allocated buffer inside PC RAM. The etran_ip then

signals end of transfer by setting a flag it one of its

configuration registers. ARM processor detects this and sends

command via AXI-Lite bus to int_gen IP core which triggers

message signaled interrupt. This is done by sending a pulse on

one of the AXI Memory Mapped To PCI Express IP core

ports.

Back on the PC side, registered interrupt handler routine is

called. Interrupt handler copies the received data from kernel

buffer to the buffer in user-space application which originally

issued request and unblocks IOCTL afterwards. Code

execution flow returns to the application and the transfer is

complete. Application is then able to test validity of the

received data by comparing it to the predefined sequence.

Operation of described system is successfully verified in

the sense that the data from the source reaches the destination

unaltered. However, real-time validity criterion is not

satisfied. This conclusion rises from the fact that software on

the PC side is running on GNU/Linux which is not a RTOS

(real-time operating system). Further work on proposed

system would include migrating PC software to a RTOS.

Another aspect of verification process was measurement of

the achieved data throughput rates. Measurement was done by

simply calling gettimeofday function in user-space application

before issuing the IOCTL to the driver and after the IOCTL

completes and then calculating the difference. Results

revealed that, on average, it takes 7.3 ms for transfer to

complete. Given that the buffer was 4MB large, achieved

throughput rate is 548MB/s. Testing was repeated without

copying data from kernel-space to the user-space buffer and

result was 6 ms. This means that, for each 4MB block of data,

1.3 milliseconds are reserved for copying it from kernel to

user buffer. The last test used two kernel-space buffers, each

4MB in size, to implement double buffering. Now the copying

from kernel-space to user-space was done in background,

while the data was being transferred from the PCIe card to

second kernel-space buffer. For 500MB transfer size,

throughput rate raised up to 680MB/s [2]. Still, 20% of CPU

time is reserved for copying the data from kernel-space to

user-space.

V. CONCLUSION

Proposed system was successfully designed and verified,

providing data throughput rate of 548MB/s or 680MB/s,

depending on whether the double buffering in Linux device

driver was used. VHDL synthesis showed low FPGA logic

resources usage which left space for implementing much more

complex logic for processing data upon acquisition. The

system is not working in real-time so far, but that is possible

to accomplish when using RTOS on PC side. In conclusion, it

is safe to say that modern SoCs provide a great amount of

processing power and speed for a reasonable price which

makes them adequate for applications in complex data

measurement systems.

ACKNOWLEDGMENT

This work was partially supported by the Ministry of

Education, Science and Technological Development of the

Republic of Serbia, under grant number: TR32029.

REFERENCES

[1] Ravi Burduk, Don Anderson, Tom Shanley, PCI Express System
Architecture, Boston, USA: Addison-Wesley, 2008.

[2] Xilinx, Bus Master Performance Demonstration Reference Design for

the Xilinx Endpoint PCI Express Solutions, v3.3, 2015.
[3] Xilinx, AXI Memory Mapped To PCI Express Gen2 LogiCORE IP

Product Guide, v2.6, 2015.

[4] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, Linux
Device Drivers, 3rd Edition, Sebastopol, CA, USA: O’Reilly Media

Inc., 2005.

[5] Hossein Kavianipour, Christian Bohm, “A high-reliability PCIe
communication system for small FPGAs”, IEEE Nuclear Science

Symposium and Medical Imaging Conference (NSS/MIC), Seoul, South

Korea, vol. 27, pp. 1-4, Oct 2013.
[6] T. Bergmann, D. Bormann, M. A. Howe, M. Kleifges, A. Kopmann, N.

Kunka, A. Menshikov, D. Tcherniakhovski, “FPGA-based multi-

channel DAQ systems with external PCI Express link to GPU compute
servers”, IEEE-NPSS 18th Real Time Conference (RT), Berkley, CA,

USA, pp. 1-5, June 2012.

[7] LiJie Chen, WeiChao Zhou, QingZhang Wu, “A design of high-speed
image acquisition card based on PCI Express”, IEEE International

Conference on Computer Application and System Modeling, Taiyuan,
China, pp. 1-4, Oct 2010.

[8] Hai-quan Cheg, Jun Hu, Shu-yan Xu, “Research into PCI Express

device’s configuration space on PC platform”, IEEE International
Conference on Computer, Mechatronics, Control and Electrical

Engineering, Changchun, China, pp. 1-4, Aug 2010.

