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Abstract—Interchip communications often exploit the so-called
serial peripheral interface (SPI) bus for lower-level and medium-
speed exchange of data. Typical use cases include application-
specific integrated circuit (ASIC) setup and testing via scan
chain. A lack of formal standardization and ubiquitous presence
inevitably lead to abundance of SPI protocol definitions. This
paper presents a custom SPI bus slave controller which includes
single and block addressable bank of read-only status, as well
as read/write configuration registers. The controller employs a
rather efficient in-frame addressing scheme which is supported
by low-propagation register bank design. Thanks to these two, the
FPGA bus implementation managed to be clocked at 100 MHz,
thus effectively achieving a 100 Mbit/s burst data throughput.

Index Terms—SPI, serial peripheral interface bus, serial link,
serial communication, master and slave controller, register bank.

I. INTRODUCTION

SERIAL communication can be described as the process of
sequentially sending single bit data at a time, over a bus

or communication channel in general. In telecommunication,
this contrasts the parallel communication, in which several bits
are sent as a whole, on a link with several parallel channels.

Serial type of communication is used for literally every
long-haul communication and most computer networks, where
the cost of cable and synchronization difficulties make parallel
communication impractical. The advantages of parallel data
transmission (i.e., no need for SerDes or serializer and dese-
rializer) are outweighed by an improved signal integrity and
transmission speeds in newer serial technologies [1] making
serial computer buses more common even at shorter distances.

Although serial links might, at first, seem inferior to parallel
ones, since they can transmit less data per single clock cycle,
it is often the case that serial links can be clocked considerably
faster thus achieving higher data rates. Factors like clock skew
and crosstalk between lines, which are far more pronounced
in parallel links, disallow those to be clocked at a higher rates.

Furthermore, in many cases, serial links are simply cheaper
to implement than parallel. The vast majority of integrated
circuits (ICs) have serial interfaces [2], as opposed to parallel
ones, so that they can have fewer pads/pins and hence shrink
die area and reduce package size and cost. This is always done
when data transfer speeds are not of paramount importance.

Some examples of such low-cost serial buses for integrated
circuits include SPI, I2C, SMBus, UNI/O, 1-Wire, etc. Gen-
erally speaking, many of these communication systems were
originally designed to connect two or more integrated circuits.
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The Serial Peripheral Interface bus (SPI), developed by [2]
Motorola in the late seventies, is a synchronous serial commu-
nication interface specification used for short distance commu-
nication, primarily in connection with integrated circuits and
embedded systems. Since then, the interface has become a de
facto standard with typical applications which include, but are
not limited to, communication with all sorts of sensors, data
converters, (flash) memories, real-time clocks (RTCs), various
types of displays such as LCDs, and custom integrated circuits.

SPI devices communicate between each other in full duplex
mode using a master-slave configuration with a single master
and one or more slaves. Multiple slave devices are supported
through selection with individual slave select (SS) lines but the
master device originates the frame for reading and writing.

Sometimes SPI is called a four-wire serial bus, contrasting
with three-wire, two-wire, and one-wire serial buses. Although
the SPI is accurately described as a synchronous serial in-
terface, it should nevertheless be distinguished from the so-
called Synchronous Serial Interface (SSI) protocol, which is a
completely different variant of a four-wire synchronous serial
communication protocol that employs differential signaling.
Even though there are some similarities between the SPI bus
and the JTAG protocol, they are not interchangeable. The SPI
bus is intended for much higher speeds, on board initialization
of device peripherals, while the JTAG protocol is utilized to
provide reliable test access to the I/O pins from an off board
controller with less precise signal delay and skew parameters.

Advantages of the SPI over the competing serial commu-
nication protocols are mostly connected to higher achievable
throughput. It is usually categorized [1] as relatively short-
distance and medium-speed interface (clock is not limited to
any maximum speed). Moreover, since the default version of
the SPI protocol defines all signals as unidirectional, both
Galvanic isolation and software implementation are feasible.

Among the main disadvantages of the SPI bus are absence of
multiple master device support, no formal standard definition,
and finally, a lack of hardware slave acknowledgment allowing
the master to transmit basically nowhere and not knowing it.
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Fig. 1. A basic SPI bus example of Single SPI Master to Single SPI Slave.
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II. THE SERIAL PERIPHERAL INTERFACE (SPI) BUS

The standard four-wire Serial Peripheral Interface (SPI) bus,
as depicted in Fig. 1, specifies the following four logic signals:

• SCLK or SCK: Serial Clock (generated by the master);
• MOSI: Master Output Slave Input (data out from master);
• MISO: Master Input Slave Output (data out from slave);
• SS: Slave Select (often active low, output from master).

The above pin names are currently the most popular. In the
past, alternative pin naming conventions were sometimes used,
and so the SPI port pin names for older IC products may differ.
Slave Select (SS) fundamentally has the same functionality as
Chip Select (CS) and is used instead of an addressing concept.
If a single slave device is used, the SS pin may be fixed to
logic low if the slave permits it. However, some slaves require
a falling edge of the chip select signal to initiate an action.

All slave devices intended for operation in multi-slave SPI
environments posses tri-state outputs so that their MISO signal
becomes high impedance (logically disconnected) when the
device is not selected. Devices without tri-state outputs cannot
share SPI bus segments with other slaves devices, instead as
in Fig. 1, only one such slave device could talk to the master.

To begin communication, the bus master configures the
clock, using a frequency supported by the slave device, typ-
ically in the order of dozens of megahertz. In addition to
setting the clock frequency, the master must also configure the
clock polarity and phase with respect to the data. Originally
Motorola names [3], [4] these two options as CPOL and CPHA
respectively, and most vendors have adopted that convention.

The timing diagram, shown in Fig. 2 applies to both the
SPI master and the slave device. For CPOL=0 the SCLK clock
active is high, while for CPOL=1 it is low. Likewise, CPHA=0
means sampling on the first clock edge, while CPHA=1 means
sampling on the second clock edge, regardless of the actual
CPOL value and whether that clock edge is rising or falling.
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Fig. 2. A timing diagram showing SPI’s clock polarity and phase. The first two
diagrams are of SCLK for CPOL=0 and CPOL=1 while the dashed and dotted
vertical lines represent sampling time instances for CPHA=0 and CPHA=1.
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Fig. 3. A typical SPI Master and SPI Slave hardware setup using two same
sized shift registers to form an inter-chip circular buffer for data transmission.

During each four-wire SPI bus clock cycle, a full duplex
data transmission occurs. The master sends a bit on the MOSI
line and the slave reads it, while the slave sends a bit on the
MISO line and the master reads it. This sequence is maintained
even when only unidirectional data [3] transfer is intended.

Transmissions normally involve two shift registers of some
given word size, such as, e.g., 8-, 12-, 16-, 24-, or 32-bits, one
on the SPI master and the other on the SPI slave side. Just
as provided in Fig. 3, these shift registers are connected in a
virtual ring topology which is actually a circular shift register
buffer of 2n-bits in length, with n-bits present in each device
as master and slave vectors, mn−1:0 and sn−1:0, respectively.

Data is usually shifted out with the most-significant bit
(MSB) first, while shifting a new least-significant bit into the
same register. At the same time, data from the counterpart
is shifted into the least-significant bit (LSB) register. After
the register bits have been shifted out and in, the master and
slave have exchanged register values. If more data needs to
be exchanged, the shift registers are reloaded to and from
some other means of the internal memory (FIFO, register bank,
etc.) and the process repeats. Transmission may continue for
any number of clock cycles. When complete, the master stops
toggling the clock signal, and typically deselects the slave.

It is not seldom for some SPI devices to use different bit-
length communications, as, for example, when SPI is used to
access the scan chain of a digital integrated circuit by issuing
a command word of one size and then getting a response of
a different size (one bit for each pin in that scan chain).



III. THE CUSTOM SPI SLAVE SYSTEM AND PROTOCOL

As already mentioned in the introduction, the SPI bus is a
de facto standard. However, the lack of a formal standard is
reflected in a wide variety of protocol options. Namely, differ-
ent word sizes are common. Practically every device defines its
own protocol, including whether it supports commands at all.
Some devices are transmit-only while others are receive-only.
Chip selects are sometimes active-high rather than active-low.
Some SPI protocols [4] even send the least significant bit first.

There are also hardware-level differences. Some chips may
combine MOSI and MISO into a single bidirectional SISO
data line. This is sometimes referred to as the “three-wire”
signaling (in contrast to normal “four-wire” SPI bus). Another
variation of SPI bus removes the chip select line altogether,
managing protocol state machine entry/exit using other meth-
ods. Anyone needing an external connector for SPI defines
their own. Signal levels depend entirely on the chips involved.

Some SPI devices even have minor variances from the
CPOL/CPHA modes described in the previous section. Send-
ing data from slave to master may use the opposite clock
edge as master to slave. Devices often require extra clock idle
time before the first clock or after the last one, or between a
command and its response. Besides, there exist two possible
logical frame dependencies within SPI logical layers. One is
called in-frame communication since the data of the slave
response is within the same time slot as the master’s request.
The other, named out-of-frame communication, is when the
slave’s logical response is within the master’s next data frame.

A custom SPI bus slave controller proposed by this paper
will use the “most standard” four-signal physical layer with the
most significant bit (MSB) sent first and the least significant
bit (LSB) sent last, just as described in Section II. Further, the
active-low chip/slave select line will be used for managing
the protocol’s state machine. Additionally it will bring the full
support for all CPOL/CPHA combinations and modes through
appropriate parameters. Instead of both in-frame and out-of-
frame communication, which is supported by, for example, the
automotive industry standard named SafeSPI [5], only the for-
mer query-response frame dependency will be implemented.

In spite of a somewhat more complicated implementation of
the in-frame with respect to the out-of-frame communication
when higher data throughputs are considered, it fundamentally
does allow higher serial communication speeds since masters’
requests are directly followed by slave’s response within the
same time slot. Even though the use of longer word sizes are
advantageous for communication speeds, a single byte (8-bit)
memory addressing granularity is targeted, and hence a single
byte word sizes for master and slave shift registers are chosen.
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Fig. 4. A custom SPI protocol architecture showing MISO and MOSI data
exchange between master and slave devices during the SPI bus read operation.

It is assumed that all the SPI devices communicate syn-
chronously using a master/slave relationship over a serial data
link that operates in full duplex mode, i.e., signals carry data
in both directions simultaneously. The master device initiates
the communication by generating a clock signal and selecting
a slave device. This action is followed by the data transfer in
either one or both directions simultaneously. In fact, as far as
the SPI bus protocol is concerned, the data frame is always
transferred in both directions. It is up to the master and slave
devices to know whether a received byte is meaningful or not.

To establish the communication, the SPI master sets the
wanted slave select pin to a low state. This SS pin has to
remain low during the complete frame transfer. As soon as
the transfer is complete, the SS pin is set back to a high state.

The SPI master and slave components exchange two frames
whose structure differentiates in the so-called single and
block or burst operation modes. The frame constitution and
MISO/MOSI protocol architecture during the SPI slave read
and write operations are sketched in Fig. 4 and Fig. 5,
respectively. The frame data transfers through the SPI bus
occur at the same time in both directions starting with the most
significant bits (MSB) and ending with the least significant bits
(LSB) of address and data. In the frame sent from the master
to the slave the first seven bits transmitted represent a register
address. The eighth bit is a read/write bit and it tells the slave
if a register content (at the address previously sent) has to be
read (0) or written (1). The next byte (8-bits) is dependent on
the eighth bit and in slave write mode it represents the data
that has to be written in the register while in slave read mode it
is simply a dummy data (0x00) that is discarded by the slave.

On the other hand, in the frame sent from the SPI slave
to the SPI master, the first seven bits are always dummy data
(0x00). The eighth bit, denoted by C, is a check bit and it
takes value of 1 if the address sent by the SPI master is valid
or 0 if the address sent by the SPI master is invalid. The next
byte depends on the SPI slave read/write mode and the actual
check bit value. Namely, in the slave read mode, if the check
bit is high, the last 8-bits represent the register content whose
address was sent by the SPI master, otherwise, in the SPI slave
write mode or if the address is invalid, a dummy data is sent.

Normally, the SPI master and slave communicate for 16
clock cycles during which a particular register is accessed for
writing or reading. If other registers need to be accessed, new
16 clock cycle SPI frames are issued, each of those containing
the address and data fields as explained by Fig. 4 and Fig. 5.

However, if the complete register bank, or larger successive
portions of it need to be read or written, the SPI master is
able to issue much more convenient block or burst commands,
which address multiple registers within a single transaction.
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Fig. 5. A custom SPI protocol architecture showing MISO and MOSI data
exchange between master and slave devices during the SPI bus write operation.
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Fig. 6. Principle comparison diagrams of the two SPI master and slave controller modes showing only SCLK and SS for a) single, and b) burst operations.

IV. CUSTOM SPI SLAVE CONTROLLER IMPLEMENTATION

The motivation to implement the so-called block or burst
SPI read and write functions is to enable a quick set and save
of a complete register bank configuration. This proved to be
especially useful during test or operational phase to set back
the integrated circuit of interest to a known configuration.

Normally, after the transfer of the 16-bit frame, the SS pin
is put back in a high logic state to disable the SPI slave, just
as given by Fig. 6a. To initiate a new transfer, another 16-bit
SPI frame is issued. Nonetheless, if after the transfer SS is still
low and the SCLK is still running, the SPI bus will operate in
the burst register read or write regime, as shown in Fig. 6b.

Namely, if the SPI write burst operation was called by the
SPI master, the master will send the data that has to be set on
the succeeding register in the register map. Similarly, if the
SPI slave is asked by the master to send data within the SPI
block read operation, the slave will send the register content of
the next register in the register map. No explicit addressing is
necessary for any of the following read/write data transactions.
Burst-mode operation finishes when the SS pin goes back high.
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Fig. 7. A simplified SPI slave controller and its register bank interconnection.

A custom SPI bus slave controller with read/write register
banks has been designed to support all previously described
features. A simplified architecture is depicted in Fig. 7 which
shows logical interconnect of two main parts: the SPI slave
controller itself, and the supporting addressable register banks.

The SPI compliant slave controller decodes the SPI bus
signals and deserializes them into a series of 8-bit bytes [6].
Communication with the SPI slave controller is established by
means of a simple data structure: a single 7-bit address register
and a single bit control register. The control register defines
whether the transfer is a read or write while the address register
provides an index into the register bank. Both configuration
(write) and status (read) registers are directly connected to
the external ports of the controller. The configuration registers
provide general purpose read/write bits for the control of an
external device. The status registers are read only and allow
the state of external pins to be monitored via the SPI interface.
The configuration/status register space is uniquely addressable.

All inputs to the slave interface controller are driven off-chip
by the SPI bus master with the exception of MISO which is a
three-state output. The MISO signal is normally in the high-
impedance state unless a read operation is in active progress.

The slave controller core is a state-machine that continually
monitors the state of the SPI signals. An SPI transfer begins
with the high-to-low transition of the slave select signal SS.
Once SS is driven low, the controller will sample the next 16
bits from the master at the MOSI input. Bits are sampled on
either the rising or falling edge of SCLK depending on the
clock’s CPOL and CPHA configuration settings. The first 7
bits in the transfer are written to the internal address register
while the eighth bit is written to the internal control register.

The address register contains the index of the (first) register
to be accessed in the register bank. Once the address and
control registers have been written, the next eight serial clocks
are used to synchronize a write to a configuration register or
a read from any register. In the burst mode regime, after each
8-bit read or write, the internal address register is incremented
and the master may read or write a further byte. This means
that successive back-to-back reads or writes will be performed
on the next register in the register bank. Once the maximum
address has been reached the address pointer will wrap around.
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An internal bit-counter is responsible for the current SPI bus
frame monitoring thus supporting the controller state machine.
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Instead of a single circular buffer, as sketched in Fig. 3,
the actual SPI slave controller core consists of two 8-bit shift
registers, one for transmitting (TX) and the other for receiving
(RX) the bus messages. The LSB of the RX register is directly
connected to the MOSI line, while the MSB of the TX register
is connected (through a three-state buffer) to the MISO pin.

A simple 8-bit data buffering is performed. Also, a separate
Write signal between the SPI slave controller core and the
register bank is necessary to synchronize the write operation,
as the SPI clock and the system clock generally differ both in
phase and frequency (with both possible relations in-between).

In contrast to data lines, which are buffered at the end of
corresponding SPI transaction, a two-way address buffering
with an intermediate point is performed. The 7-bit address is
divided/buffered into 5-bit pre-address and 2-bit post-address.
The reason for this separation is explained in the next section.

Generation of the so-called check bit C is accomplished via
simple minimized combinational logic network. The address
validation is hard-coded with no real insight into the register
bank. In this way the check bit information is readily available.

The burst regime entry point matches the internal bit-counter
overrun (value of sixteen) which is used by the state machine.

Finally, it is worth of noting that any number of sequential
register read or register write operations may be performed
within the “extended” burst frame. The SPI bus transfer will
terminate immediately as soon as SS is driven high. If the user
wishes to switch read and write mode, the current SPI transfer
must be terminated before the read or write mode is changed.



V. A READ & WRITE REGISTER BANK ARCHITECTURE

The configuration registers are organized as a bank of 8-bit
general purpose read and write registers that may be accessed
via the SPI bus slave controller. The configuration registers are
designed to be used for the general configuration of devices
external to the controller. The contents of these registers are
made available at the controller output port which is composed
of all the configuration register bits [6] concatenated together.

The status registers follow exactly the same structure as the
configuration registers. The difference is that these registers
are read only. Any attempt to write these registers will have
no effect other than to perform a dummy transfer on the SPI
bus. The status registers are designed to be used for snooping
the state of control signals in an external device. Equivalently,
the input port contains the contents of all the status register
bits concatenated together. The total number of 8-bit registers
in this implementation is 128 (defined by seven address bits).

The register bank architecture uses a system clock, therefore
at least a single clock synchronization from the SPI clock
(SCLK) on the write strobe signal is necessary to avoid meta-
stability when crossing between these different clock domains.

The critical point of the proposed custom slave controller
architecture is the SPI read operation. It is obvious from Fig. 4,
that there is only a single SPI clock period between the last
address bit that comes on the MOSI line and the first output
data bit that should appear on the MISO line. The complete
controller and the register bank should react within this SPI
clock cycle and provide the requested data to the bus output.

To support this key feature, an innovative register bank has
been introduced, whose separated write and read data paths
are provided in Fig. 8 and Fig. 9, respectively. Both of these
two data paths are in a certain sense “pipelined” in order to
decrease propagation delays. Namely, five MSBs of the seven-
bit address come first and are immediately applied to the larger
32-to-1 multiplexer array and 5-to-32 binary decoder in case
of read and write data paths, respectively. By the time point in
which SPI slave controller accepts the two address LSBs, the
four-register bank data has already propagated through major
combinational components and only 4-to-1 multiplexer array
and 1-to-4 demultiplexer are remaining in the read/write data
path. Propagation through the elementary networks is feasible
even for higher clock speeds. The timing requirements are
in this manner substantially relaxed. Now it becomes apparent
why addressing was divided in pre- and post-address buffering.

Although other divisions and even deeper decoder and
multiplexer granularities are certainly possible, register orga-
nization into groups of four with final two-bit (post-address)
decoding, seemed as sort of a sweet spot for our design needs.

VI. FUNCTIONAL SIMULATION & MEASUREMENT TESTS

The described custom SPI slave controller together with the
register banks was implemented in both Verilog and VHDL
Register-Transfer Level (RTL) behavioral modeling code. The
slave controller was implemented with a maximum bank size
of 27 = 128 single byte wide (8-bit) registers. After the
functional verification, the code was synthesized and placed on
the ZedBoard’s [7] ZynqTM-7000 All Programmable (AP) SoC
with external SPI wires lead to the PL-side Pmod connectors.

For practical testing purposes, an appropriate SPI bus master
controller also had to be implemented. Both, the hard-coded
FPGA [8], [9] and kernel-based [10] masters were realized on
another ZedBoard. Correct operation was achieved with serial
SPI clock frequencies of 100 MHz which roughly correspond
to data transfer rates of 100 Mbit/s in the burst mode. These
numbers are in agreement with, but still somewhat higher than
other pure FPGA implementations of the SPI master/slave
transceivers [11] found in the technical literature. Comparable
data throughputs are expected in the pending ASIC realization.

VII. CONCLUSION

A custom serial peripheral interface (SPI) bus slave con-
troller together with configuration and status register banks is
presented in this paper. The SPI slave controller is based upon
a standard four-wire interface but it defines its own in-frame
communication protocol. This SPI protocol supports both
single register addressing as well as burst transfer modes, and
is tailored for obtaining the maximum data rate performance.

In such constellation, bus read operation presented a bot-
tleneck as only a single SPI clock period was allocated for
the complete address decoding and data delivery. Innovative
hardware implementation which organized the bank registers
in groups of four allowed a separate pre-address to decode the
register group and the post-address to reach the explicit single-
byte register in the final decoding step. This “combinational
pipelining” to a large extent relaxed the timing requirements.

This design was tested on a commercially available FPGA
development kit. Using hardware- and software-based SPI
master implementations, the bus was clocked up to 100 MHz
which translates to nearly 100 Mbit/s, a state of the art figure
of merit among rather simple serial communication protocols.
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