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Abstract— This paper evaluates the design method of short 

wordlength FIR (finite impulse response) filters. The design is 

based on the change of basis of polynomial space, which means 

that a filter is designed as a weighted parallel structure 

consisting of FIR filters with only 1s and 1s as coefficients of 

the transfer function, i.e. only adders/subtractors and unit 

delay lines in hardware implementation. The structure allowed 

for a higher minimal attenuation in the stopband in 87.8% of 

designed filters. Negligible errors in the cutoff frequency and 

passband attenuation were noticed. Also, this paper broadens 

the existing design method to high pass, bandpass and 

bandstop filters.  Finally, IIR (infinite impulse response) filters 

were discussed as a possible generalization of the design 

procedure.  

 

Index Terms— filter design; filter sensitivity; FIR; short 

wordlength; stopband attenuation.  

 

I. INTRODUCTION 

FILTER design is often constrained by the wordlength of 

the digital system encompassing the filter. Short wordlength 

is a necessity in microprocessor and FPGA (field 

programmable gate array) filter implementations in order to 

achieve sufficient computational speed, especially in real 

time application [1]-[2]. Also, low number of bits for 

number representation can lead to power efficient systems 

[3]-[5]. 

Reference [6] presents the realization structure for FIR 

(finite impulse response) filters, that can be used for short 

wordlength filter design. It was shown that, comparing to 

direct form realization, negative quantization effects are 

reduced, i.e higher minimal attenuation in the stopband is 

achieved. In other words, the proposed structure exhibits 

lower filter sensitivity (dependence of the transfer function 

to its coefficients) [7]-[8]. This paper reexamines low pass 

filter design from [6]. Further, it introduces the high pass 

transform matrix and expands the design method to high 

pass, bandpass and bandstop filters. 

The research presented in this paper is structured as 

follows. First, the design method is summarized. Transform 

matrices and used polynomial bases are exhibited and 

discussed. Then, low pass and high pass filters with cutoff 

frequencies in the range from 0.1 to 0.9 are designed with 

short wordlength in the direct form and the proposed 

structure. The consequent comparison shows differences and 

advantages of the design method in [6]. Quantization errors 

of the passband and stopband attenuation, and location of 

the cutoff frequency are assessed.  
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II. DESIGN FOR SHORT WORDLENGTH 

The inspected design method for short wordlength FIR 

filters is presented with detailed mathematical explanation in 

[6]. It is based on designing a FIR filter using a well known 

method (set of coefficients ai, i=0, 1,…, n), and finding the 

set of coefficients bi, i=0, 1,…, n using the formula 
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where Mn
1

 is the inverse matrix of Mn, and Mn consists of 

columns equal to vectors of coefficients of base 

polynomials, i.e. base filters. In order to derive a low pass 

structure for short wordlength design shown in Fig. 1, base 

filters should be connected in parallel with weight 

coefficients bi, i=0, 1,…, n. The structure needed for 

implementation of high pass filters would differ from the 

structure in Fig. 1. Subtractors should be put instead of 

certain adders. Finally, quantization is applied to the set of 

coefficients. 

 

 
 

Fig. 1.  Filter realization structure based on polynomial basis transform [6]. 

 

Due to the fact that transforming the coefficients can lead 

to a filter which has magnitude response higher than 0 dB in 

some points, one must perform normalization. Before the 

quantization step in the design process, coefficients are 

normalized with the maximal value of the magnitude 

response. In [6], a different normalization method was 

implemented (base vectors normalization using Euclidean 

distance), which produced different results and evaluation of 

the design procedure. This paper deals with improvement of 

the normalization step and presents new results. 

Reference [6] only explores low pass filter design. The 

key difference between low pass and high pass filters is the 

transform matrix Mn and the set of base polynomials. 
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A. Low pass filters 

Transforming the coefficients while preserving the 

frequency response of the filter is based on the mathematical 

expression of z-transform of the transfer function H(z): 
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where n is the order of the filter, and the rest of the notation 

is as in (1). Equation (2) stands for low pass filters. It is 

clear that base polynomials, which are being multiplied by 

coefficients bi, i=0, 1,…, n, are i
th

 order polynomials with all 

coefficients equal to 1. This defines the matrix Mn, whose 

columns contain these coefficients. E.g, transform matrix for 

low pass filter of 3
rd

 order is a 4 by 4 matrix 
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It can be seen that Mn has ones on and above the main 

diagonal and has zeros below it. Its inverse matrix has ones 

on the main diagonal, 1 on the diagonal above it, and all 

other entries equal to 0. 

The fact that matrix produces great results only in the 

case of low pass filters is explained in Fig. 2. Magnitude 

responses of base polynomials of orders from 1 to 4 are 

shown. It is clear that all these base filters are low pass. 

Their linear combination can be a high pass filter too, 

because the set of polynomials is an orthogonal basis. 

However, it is this low pass character of the structure that 

renders it less sensitive to quantization effects only in the 

case of the original low pass filter design. This means that 

utilization of low pass base filters for the construction of a 

low pass filter provides a more feasible design. Similarly, it 

will be shown that utilization of high pass base filters 

provides a more feasible design of high pass filters. 

 

 
 

Fig. 2.  Magnitude responses of base polynomial filters for low pass filter 

design. 

 

B. High pass filters 

Similarly to low pass design, high pass filters are based 

on the expression: 
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where the notation is the same as in (2). The difference 

between (2) and (4) is in the base polynomials. High pass 

base polynomials consist of 1s and 1s alternately appearing 

in the vectors of coefficients. This means that the transform 

matrix in the case of a 3
rd

 order filter would be 
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It is observed that the inverse matrix used for calculating 

the filter coefficients according to (1), consists of 1s and 1 

alternately appearing on the main diagonal, and also on the 

diagonal above it, starting from 1. All other matrix entries 

are equal to 0. 

Filters designed with this transform matrix exhibit great 

performance only in the case of high pass filters. This is 

illustrated in Fig. 3, which shows magnitude responses of 

base polynomials of orders from 1 to 4. It is obvious that 

these polynomials are high pass filters, hence, the 

explanation is as in the case of low pass filters (Fig. 2). 

 

 
 

Fig. 3.  Magnitude responses of base polynomial filters for high pass filter 

design. 

 

C. Banspass and bandstop filters 

Bandpass and bandstop filters can be designed as cascade 

connection of one low pass and one high pass filter with 

appropriate cutoff frequencies. Accordingly, the presented 

design for short wordlength can be applied to these types of 

filters too. 

However, although stopband improvement is expected to 

be even higher and cutoff frequency error negligible, one 

must pay attention to the oscillations in the passband. The 

bandpass (bandstop) filter is considered valid if both 

incorporated low pass and high pass filters have low enough 



 

error. Namely, if the sum of errors of low pass and high pass 

filter exceeds 3dB (or any other set value of the constraint) 

in any point, then the passband of the filter is significantly 

degraded. 

III. EXAMPLES AND EVALUATION 

Evaluation of the design for short wordlength is 

performed on low pass and high pass FIR filters with cutoff 

frequencies set equidistantly in the range from 0.1 to 0.9 

with the distance of 0.02. All filters are of order 54, which 

is chosen to be high enough to get designed cutoff frequency 

c close to the desired des (frequency set as an argument 

for the function for Hamming window based FIR design 

[9]). This can be seen in upper plots in Figs. 8 and 9, by 

noticing that slopes of functions c=f (des) are 

approximately equal to 1. 

Each designed filter is presented in three forms: 

preliminary design with “infinite” precision wordlength 

(maximum available computer precision), design with 

coefficients quantized to format Q1.9 (1 bit for the sign and 

9 for the fractional part of the number), and transformed 

design (as in Fig. 1) with coefficients quantized to Q1.9. 

Further decrease of the wordlength may lead to rounding all 

coefficients to zeros in the quantization step, thus 

completely diminishing the design. 

Example of frequency response (magnitude response in 

upper subplot and phase response in lower subplot) of a low 

pass filter (des=0.32) is presented in Fig. 4. Similar 

example for a high pass filter (des=0.28) is shown in Fig. 

5. Black solid lines denote responses of infinite precision 

filters, blue dotted lines responses of quantized filters, and 

red dashed lines responses of transformed and quantized 

filters. 

Magnitude responses suggest higher minimal attenuation 

in the stopband, and negligible degradation of the passband 

attenuation and cutoff frequency due to quantization in the 

case of transformed design. The phase response remains a 

linear function in the full range of normalized frequency. 

Zoomed subplots show passbands of filters. It can be seen 

that quantization produces a small error in the passband 

attenuation. This error is slightly higher in the case of the 

transformed design. However, for many of the designed 

filters, it is below 1dB, which can be considered negligible 

for some applications. Mean values of differences between 

attenuation in the passband of the infinite precision filter and 

the others, are presented in Fig. 6 (for low pass filters) and 

Fig. 7 (for high pass) filters. 

It can be seen that the mean error functions for low and 

high pass filters are symmetric with the line des=0.5. This 

means that the mean degradation of the passband attenuation 

depends only on the width of the passband. The same error 

is produced for the low pass filter with the cutoff frequency 

des and the high pass filter with 1des. This is due to the 

analogy present in the window based design approach for 

low pass and high pass filters [9]. 

 

 
 

Fig. 4.  Magnitude and phase responses of a low pass filter with des=0.32, 

showing desired characteristics (black solid), direct form realization with 

quantized coefficients (blue dotted), and transformed realization with 
quantized coefficients (red dashed). 

 

 
 

Fig. 5.  Magnitude and phase responses of a high pass filter with 

des=0.28, showing desired characteristics (black solid), direct form 

realization with quantized coefficients (blue dotted), and transformed 

realization with quantized coefficients (red dashed). 

 

Further, it is obvious that the functions of mean 

degradation in Figs. 6 and 7 have higher mean and standard 

deviation in the case of transformed filter. However, the 

function of mean degradation is bounded above by 1.4dB. 

The main advantage of the design approach presented in 

[6] is the fact that, in the case of quantization, higher 

minimal attenuation in the stopband is achieved with the 

basis transform. This fact is evaluated in Figs. 8 and 9. 

 

 
 

Fig. 6.  Mean value of degradation of passband attenuation in low pass 

filters due to quantization, in the case of direct form realization (blue 

dotted), and transformed realization (red dashed). 

 



 

 
 

Fig. 7.  Mean value of degradation of passband attenuation in high pass 

filters due to quantization, in the case of direct form realization (blue 
dotted), and transformed realization (red dashed). 

 
 

Fig. 8.  Designed cutoff frequencies (upper subplot) and minimal 

attenuations in the stopband (lower subplot) of low pass filters, in the case 
of desired filter (black solid), direct form realization with quantized 

coefficients (blue dotted), and transformed realization with quantized 

coefficients (red dashed). 

 

 
 

Fig. 9.  Designed cutoff frequencies (upper subplot) and minimal 

attenuations in the stopband (lower subplot) of high pass filters, in the case 
of desired filter (black solid), direct form realization with quantized 

coefficients (blue dotted), and transformed realization with quantized 

coefficients (red dashed). 

 

For each filter and its desired cutoff frequency, minimal 

attenuation in the stopband (lower subplot) and designed 

cutoff frequency (upper subplot) are plotted in Figs. 8. and 

9. Only several filters show higher minimal attenuation 

without basis transform, and they all have des between 0.1 

and 0.2, or above 0.8. Better performance is observed for 

filters with the cutoff frequency in the middle of the 

explored frequency range if the basis transform is applied. 

Namely, in the case of 87.8% of all designed filters, higher 

minimal attenuation in the stopband is observed for the 

transformed realizations. 

Table I shows mean and standard deviation of the design 

errors in the case of low pass filters. The included errors are 

the change of the stopband attenuation and the shift of the 

cutoff frequency. 

It can be observed that the mean attenuation error is 

significantly lower in the case of mapped quantized FIR, 

which means that minimal attenuation is higher. Further, 

oscillations and slightly higher maximal attenuations in the 

passband are compensated with significantly lower mean 

value of cutoff frequency error (with order of magnitude 

10
5

). 

Since the same design approach has been implemented 

for both low pass and high pass filters, it was shown that the 

design errors depend only on the passband width. This 

means that the mean and standard deviation of the error of 

the high pass filters are the same as in Table I. The only 

difference is that the cutoff frequency error has a different 

sign, suggesting that for low pass filters, quantization leads 

to a decrease of the cutoff frequency and for high pass filters 

to an increase. However, for filters of the same passband 

width, the value of the decrease and the increase are the 

same, and are negligible. 

 
TABLE I 

ERRORS IN FILTER DESIGN (MEAN  STANDARD DEVIATION) 

 

 Quantized FIR 
Mapped 

quantized FIR 

Stopband 

attenuation 

error [dB] 
11.6826  2.907 7.8103  3.9416 

Cutoff 

frequency 

error [n.u] 

0.428010
3

  

0.359210
3

 

0.00310
3

  

0.002910
3

 

 

IV. CONCLUSION AND FUTURE WORK 

Filter sensitivity and quantization effects are being 

examined for years. Both solutions in the form of filter 

structures [10]-[11] and numerical optimizations [12]-[13] 

have been presented. This paper has provided insight into 

why the design procedure [6] exhibits great performance. It 

showed that the design produces higher stopband attenuation 

with insignificant errors in the passband for a wide range of 

cutoff frequencies. However, only Hamming window based 

FIR filters have been examined. Other design methods as 

the first step of the design for short wordlength should be 

analyzed in further research. 

Infinite impulse response (IIR) filters have also been 

explored in the context of short wordlength [14]. Analogous 

to the design procedure in [6], IIR filters may be designed as 

weighted parallel connections of base transfer functions, 

whose numerator and denominator polynomials contain only 

1s and 1s in order to avoid an increase of the number of 

multipliers. According to the analysis presented in this 

paper, those transfer function should be either low pass or 

high pass filters. Further, calculating the final set of 

coefficients cannot be a simple matrix-vector multiplication. 

A more complex computational procedure must be 

implemented, taking in consideration the right set of base 

transfer functions. 
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