



Abstract—In this paper an efficient FPGA implementation of
the multistage FIR decimator is presented. The proposed
implementation is based on the cascaded connection of the m
decimation by 2 stages, obtaining overall decimation factor of 2m.
Each stage is designed as a half-band FIR filter decimator. The
FPGA realization is verified by the simulation and by analysis of
the round-off quantization noise at the output of the decimator.

Index Terms—FIR, FPGA, multistage decimator.

I. INTRODUCTION

The digital stage of the modern reconfigurable
telecommunications receivers usually consists of the digital
down-sampling and decimation followed by the base-band
processing of the signal. The major requirements for the
design and implementation of the decimators are high speed,
low power consumption and low signal distortion. As a
possible solution, an efficient Field-Programmable Gate
Arrays FPGA implementation of the multistage FIR
decimator is presented in this paper.

Decimation consists of the filtering and down-sampling by
the factor of M. In practical realizations, decimation is often
realized as a multistage structure [1], [2]. In multistage
approach, changing of sampling rate is performed in several
steps, obtaining the overall decimation factor M:

 1

,
L

l
l

M M



 (1)

where Ml is the down-sampling factor of the stage l, and the L
is number of stages. Multistage approach is suitable when the
very sharp overall filter response is required. Specially, when
the decimation factor is of the form:

Bogdan Marković is with the , University of Belgrade, School of Electrical

Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia and with
Bitgear Wireless Design Services LLC, Stevana Markovića 8, 11080 Zemun,
Belgrade, Serbia (e-mail: bogdan.markovic@bitgear.rs).

Miloš Bjelić is with the University of Belgrade, School of Electrical
Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
bjelic@etf.rs).

Miodrag Stanojević is with the University of Belgrade, School of
Electrical Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia
and with Bit Projekt d.o.o, Cara Nikolaja II 21, Belgrade, Serbia (e-mail:
miodragstanojevic@bitprojekt.co.rs).

Jelena Ćertić is with the University of Belgrade, School of Electrical
Engineering, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia (e-mail:
certic@etf.rs).

 2 ,mM  (2)

an efficient structure can be obtained by the cascaded
connection of the L=m factor of 2 decimators.

Decimator filter can be implemented as a FIR or IIR filter.
However, the FIR filter implementation as a poly-phase
structure provides additional computational savings. Poly-
phase implementation in the combination with the FIR half-
band stage filters is considered in this paper [1].

The remaining of the paper is organized as follows. In
section 2 FIR decimation implementation structure is briefly
described. In section 3, efficient FPGA realization of the
single stage is presented. In section 4 the results of the round-
off noise analysis of the implemented structure are presented.
Section 5 concludes the paper.

II. MULTISTAGE FIR DECIMATOR

The decimator considered in this paper is suitable for the
decimation factors M=2m. Each stage consists of the half-band
FIR filter followed by the down-sampler by the factor of 2,
Fig. 1. A half-band FIR filter can be implemented as a two
branches poly-phase structure. The impulse response of the
FIR half-band filter is symmetrical and every second
coefficient is zero. Because of that, the filter in the second
branch is reduced to pure delay and single shift operation
(multiplication by the factor 0.5). The l-th stage filter transfer
function can be expressed as:

     

 
 

2 1 2
0 1

2
2 1 4

0 0.5
l

l l l

N

l

H z E z z E z

E z z z






  


 (3)

where El0(z) and El1(z) are transfer functions of the polyphaser
branches, and Nl is the l-th stage filter order.

In the decimator structure based on the poly-phase half-
band FIR filter, poly-phase filters could be moved to the
lower sampling frequency, i.e. after the down-sampler. Each
stage filter consists of connections of the FIR filter, pure delay
and factor of 2 down-samplers, Fig. 2.

H1(z) 2 H2(z) 2 Hm(z) 2

Fig. 1. Multistage decimator.

Efficient Implementation of the Half-band FIR
based Multistage Decimator

Bogdan Marković, Miloš Bjelić, Miodrag Stanojević, and Jelena Ćertić, Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. EKI2.2.1-4

El0(z)2

0.5z-(Nl-2)/4

z-1

2

Input Output

Fig. 2. The l-th stage factor of 2 decimator.

FIR filter of each stage is designed as a half-band filter.

However, the required specifications differ from stage to
stage. For the decimator considered in this paper, assumed
maximal frequency of the signal is f0, the starting sampling
frequency, i.e. sampling frequency before the first decimation
stage is f1 and the resulting sampling frequency i.e. sampling
frequency after the decimation is: fm+1. The sampling
frequency at the output of the stage l is the same as fl+1 the
input sampling frequency of the stage l+1:

 

 

 

1 0

01

1 0

2 1

2 1 , 1
2

2 1

l l

m

f Mf

M
f f l m

f f





 

     

  (4)

where ρ can be considered as a final oversampling factor and
for each stage l the output sampling frequency is fl+1=fl/2. The
requirements for the normalized (digital) band-edge
frequencies for the stage l filters are:

 
1

0 2
2

1

l m

pl
l

sl pl

f

f

 

    


  
 (5)

where ωpl is the pass-band edge frequency, and ωsl is the stop
band edge frequency of the l-th stage half-band filter. It
should be noted that the normalized (digital) band-edge
frequencies are symmetrical about the π.

From the equations (4) and (5) it is obvious that the
transition zone of the first stage filter is the widest comparing
to other filters. For that reason, the required order Nl of the l-
th stage filter increase from stage to stage, i.e.:

 1 l mN N N  . (6)

The overall system is equivalent with the single stage

decimator of the factor M, Fig. 3, with the transfer function of
the equivalent filter:

   

1

.
L

l
eq l

l

H z H z



 (7)

Heq(z) M

Fig. 3. The equivalent factor of M decimator.

III. FPGA IMPLEMENTATION

The implementation of the proposed multistage FIR filter
decimators depends on the specific application and target
platform of the overall system. Efficient FPGA
implementation can be achieved by time-sharing of the chip
resources. Therefore, it is possible to perform complex math
operations with relatively low number of hardware-built in
multipliers and memories available on the chip. The limiting
factor is the relationship between maximum working
frequency of the system (Fs) and signal sampling frequency
(Fin), where filtering takes places and which gives maximum
number of possible operations over one period of the signal.

The implementation structure will be explained in details
for the example decimator of the overall decimation factor
M=16. The decimator is realized as a 4 stage structure with
stop-band attenuation of 80 dB. The orders of the half-band l-
th stage filters are: N1=6, N2=10, N3=18 and N4=234. The
magnitude response of the equivalent filter is presented in
Fig. 4.

Fig. 4. Magnitude response of the equivalent filter.

This specific half-band filter for decimation is implemented

on Spartan 6 slx100 series of Xilinx FPGAs [3]. For the
relationship beetwen working frequency and input signal
sampling frequency Fs/Fin in the system, value 200 is taken.
The realization of half-band filter can be divided into the first
three stages of decimation, with low number of coefficients
and into the fourth stage, which comprises numerous
coefficients. During filter implementation, only non-zero
coefficients are used, along with filter symmetry, so the
number of arithmetic operations is lowered 4 times when
compared to direct FIR realization. Coefficients of interest are
stored in ROM memory.

Fig. 5. Efficient FPGA implementation.

Block diagram of implementation is given in Fig. 5. In

order to achieve effective filter realization, branches E1(z) and
E0(z) share mutual Xilinx dual port BRAM where all 235
signal samples are stored. The yellow block in Fig. 5. named
"Memory BRAM address and data enable control" is in
charge of control of data write and read process from the
memory, as well as of suitable data enable control signal
which is active every second signal sample. On memory port
A and memory port B, the first and 235th, the third and 233rd ,
etc. signal samples are simultaneously read, pair by pair, then
they are added and multiplied with corresponding filter
coefficients. Multiplier output is taken to accumulator. Trivial
filter branch is implemented in such a way that the central
signal sample is read from the same memory and by shifting
the bit into the right side for one place, the operation of
multiplication by 0.5 is achieved.

In the first three stages, when non-zero elements and the
symmetry of FIR filters is taken into account, the number of
coefficients is in order 3, 5, 9, for these filters, so Distributed
RAM (SliceM components on the Spartan 6) can be used for
their implementation instead of BRAMs.

This architecture can be used for all filters which fulfill the
condition that Fs/Fin is larger than the number of non-zero and
symmetrically different filter coefficients + 1. Apart from
efficiency, the suggested architecture is also modular, i.e. with
small changes, it can be used for all levels of decimation,
various filter types and working frequencies of FPGAs as
well.

The input data type for signal samples is Fix18.17 (word-
length is 18 and the number of fractional bits is 17). Inputs for
hardware-built in multipliers on Spartan 6 FPGAs are 18-bit
wide (Fix18.0), with the result of multiplication operation of
48 bit in length. For the accumulator (i.e. multiplier) output,
48-bit data are used, so slicing of the bit is inevitable at the
end of calculation. Furthermore, on adder output, the result is

given by the format Fix19.17, so slicing one LSB bit is
necessary. In every spot where bit slicing took place, a block
"Bit slice" is used, which performs the slicing and rounding of
the results. By this block, random value is added (0 or 1 for
LSB) to the final result, so average value of quantization error
is 0 [4]. Block diagram of this block is given in Fig. 6. On the
desired length of slicing – Q, from initial data word length of
Q+M, M≥1, value produced as concatenated zero constant of
the length Q-1 and (Q+1)th bit from the initial word, is added.
By adding these two values, the desired Q word length is
achieved, with zero average value of the quantization error.
Fig 7. shows the comparison of results achieved in MATLAB
(float point arithmetic) and the results of the simulation of
FPGA work (fixed point arithmetic).

Fig. 6. Rounding by truncation.

TABLE I
FPGA RESOURCES USED FOR HALF BAND FILTER DESIGN ON SPARTAN 6

Component Used Available %
Slices 79 15822 <1%
BRAMs 2 536 <1%
DSPs 1 180 <1%

IV. ROUND-OFF NOISE ANALYSIS

The results obtained by the single stage filter presented in
the previous section are compared with the results obtained in
MATLAB with double precision floating point arithmetic.
The error of the output signal

      FPGA MLout n out n out n  
 (8)

is shown in Fig. 7. The sources of the error are quantitation of
filter coefficients, and quantitation of arithmetic operations.
The detailed MATLAB simulation is developed as a tool for
investigating the effects of quantization. The simulation
approach makes possible investigation of different
quantization effects separately. There are three sources of
arithmetic operations, and those effects can also be included
or excluded form simulation.

The quantization of each source is simulated by means of
Monte Carlo simulation, and by means of semi-analytical
approach [5]. Monte Carlo simulation requires repetition of
the experiment with new set of input signals for each iteration.
This approach is time-consuming, however, the implemented
structure can be fully simulated. The semi-analytical approach
is based on the assumptions about the distributions of error
signals introduced by the quantization [6], [7]. Each point of
quantization is modeled as an additional source of random
signal with defined statistical parameters, amplitude
distribution, mean and variation. The influence of the
observed noise source at the system output is calculated
analytically or numerically by propagating the source signal
from its origin to the decimator output. Monte Carlo
simulation can be used for adjustment of semi-analytical
model.

 o
ut

[n
]

Fig. 7. Output signal error.

As an example, power spectral densities of the noises

introduced in each decimator stage as results of the
quantization at the output of shifter, multiplier and adder are
obtained by means of simulation. It should be noted that the

noise introduced in the stage l is low-pass filtered by all filters
of the stages l+1,…,L. Because of that, the influence of the
last stage is dominant, Fig. 8.

P
ow

er
/fr

eq
ue

nc
y

(d
B

/r
ad

/s
am

pl
e)

Fig. 8. PSD of the output noise signal.

V. CONCLUSION

The efficient FPGA implementation of decimator presented
in this paper is based on multistage FIR filter design. The
implementation is developed in a way that allows it to be
change to meet different requirements, for example, different
number of stages, or different filter lengths. The results
presented in this paper are first step in detailed analysis of the
quantization noise propagation in the case of multistage
multirate systems.

ACKNOWLEDGMENT

This paper is realized as a part of activities supported by
Ministry of Education, Science and Technological
Development, project TR-36026 and project TR-32023.

REFERENCES

[1] L. Milić, Multirate filtering for digital signal processing: MATLAB

applications, Info. Science Reference, Hershey, PA, 2009.
[2] R. Crochiere and L. Rabiner, “Optimum FIR digital filter

implementations for decimation, interpolation, and narrow-band
filtering,” in IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 23, no. 5, pp. 444-456, Oct 1975.

[3] http://www.xilinx.com/support/documentation-navigation/silicon-
devices/fpga/spartan-6.html (accessed May, 6th 2017).

[4] C. Maxfield, “An introduction to different rounding algorithms,”
EETimes, 2006, http://www.eetimes.com/document.asp?doc_id=1274485
(accessed May, 6th 2017).

[5] J. A. Lopez, G. Caffarena, C. Carreras and O. Nieto-Taladriz, "Fast and
accurate computation of the roundoff noise of linear time-invariant
systems," in IET Circuits, Devices & Systems, vol. 2, no. 4, pp. 393-408,
Aug. 2008.

[6] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing
Prentice Hall, Englewood Cliffs, NJ, 1989.

[7] K. Parashar, et al.: 'Shaping probability density function of quantisation
noise in fixed point systems', Proc. Conference Record of the Forty
Fourth Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, pp. 1675-1679, Nov. 2010.

