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Abstract—In this paper an efficient FPGA implementation of 
the multistage FIR decimator is presented. The proposed 
implementation is based on the cascaded connection of the m 
decimation by 2 stages, obtaining overall decimation factor of 2m. 
Each stage is designed as a half-band FIR filter decimator. The 
FPGA realization is verified by the simulation and by analysis of 
the round-off quantization noise at the output of the decimator. 

 
Index Terms—FIR, FPGA, multistage decimator.  
 

I. INTRODUCTION 

The digital stage of the modern reconfigurable 
telecommunications receivers usually consists of the digital 
down-sampling and decimation followed by the base-band 
processing of the signal. The major requirements for the 
design and implementation of the decimators are high speed, 
low power consumption and low signal distortion. As a 
possible solution, an efficient Field-Programmable Gate 
Arrays FPGA implementation of the multistage FIR 
decimator is presented in this paper. 

Decimation consists of the filtering and down-sampling by 
the factor of M. In practical realizations, decimation is often 
realized as a multistage structure [1], [2]. In multistage 
approach, changing of sampling rate is performed in several 
steps, obtaining the overall decimation factor M: 
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where Ml is the down-sampling factor of the stage l, and the L 
is number of stages. Multistage approach is suitable when the 
very sharp overall filter response is required. Specially, when 
the decimation factor is of the form: 
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an efficient structure can be obtained by the cascaded 
connection of the L=m factor of 2 decimators. 

Decimator filter can be implemented as a FIR or IIR filter. 
However, the FIR filter implementation as a poly-phase 
structure provides additional computational savings. Poly-
phase implementation in the combination with the FIR half-
band stage filters is considered in this paper [1]. 

The remaining of the paper is organized as follows. In 
section 2 FIR decimation implementation structure is briefly 
described. In section 3, efficient FPGA realization of the 
single stage is presented. In section 4 the results of the round-
off noise analysis of the implemented structure are presented. 
Section 5 concludes the paper. 

II. MULTISTAGE FIR DECIMATOR 

The decimator considered in this paper is suitable for the 
decimation factors M=2m. Each stage consists of the half-band 
FIR filter followed by the down-sampler by the factor of 2, 
Fig. 1. A half-band FIR filter can be implemented as a two 
branches poly-phase structure. The impulse response of the 
FIR half-band filter is symmetrical and every second 
coefficient is zero. Because of that, the filter in the second 
branch is reduced to pure delay and single shift operation 
(multiplication by the factor 0.5). The l-th stage filter transfer 
function can be expressed as: 
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where El0(z) and El1(z) are transfer functions of the polyphaser 
branches, and Nl is the l-th stage filter order. 

In the decimator structure based on the poly-phase half-
band FIR filter, poly-phase filters could be moved to the 
lower sampling frequency, i.e. after the down-sampler. Each 
stage filter consists of connections of the FIR filter, pure delay 
and factor of 2 down-samplers, Fig. 2. 
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Fig. 1.  Multistage decimator. 
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Fig. 2.  The l-th stage factor of 2 decimator. 

 
FIR filter of each stage is designed as a half-band filter. 

However, the required specifications differ from stage to 
stage. For the decimator considered in this paper, assumed 
maximal frequency of the signal is f0, the starting sampling 
frequency, i.e. sampling frequency before the first decimation 
stage is f1 and the resulting sampling frequency i.e. sampling 
frequency after the decimation is: fm+1. The sampling 
frequency at the output of the stage l is the same as fl+1 the 
input sampling frequency of the stage l+1: 
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where ρ can be considered as a final oversampling factor and 
for each stage l the output sampling frequency is fl+1=fl/2. The 
requirements for the normalized (digital) band-edge 
frequencies for the stage l filters are: 
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where ωpl is the pass-band edge frequency, and ωsl is the stop 
band edge frequency of the l-th stage half-band filter. It 
should be noted that the normalized (digital) band-edge 
frequencies are symmetrical about the π. 

From the equations (4) and (5) it is obvious that the 
transition zone of the first stage filter is the widest comparing 
to other filters. For that reason, the required order Nl of the l-
th stage filter increase from stage to stage, i.e.: 
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The overall system is equivalent with the single stage 

decimator of the factor M, Fig. 3, with the transfer function of 
the equivalent filter: 
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Fig. 3.  The equivalent factor of M decimator. 

 

III. FPGA IMPLEMENTATION 

The implementation of the proposed multistage FIR filter 
decimators depends on the specific application and target 
platform of the overall system. Efficient FPGA 
implementation can be achieved by time-sharing of the chip 
resources. Therefore, it is possible to perform complex math 
operations with relatively low number of hardware-built in 
multipliers and memories available on the chip. The limiting 
factor is the relationship between maximum working 
frequency of the system (Fs) and signal sampling frequency 
(Fin), where filtering takes places and which gives maximum 
number of possible operations over one period of the signal. 

The implementation structure will be explained in details 
for the example decimator of the overall decimation factor 
M=16. The decimator is realized as a 4 stage structure with 
stop-band attenuation of 80 dB. The orders of the half-band l-
th stage filters are: N1=6, N2=10, N3=18 and N4=234. The 
magnitude response of the equivalent filter is presented in 
Fig. 4. 

 
 

Fig. 4.  Magnitude response of the equivalent filter. 
 
This specific half-band filter for decimation is implemented 

on Spartan 6 slx100 series of Xilinx FPGAs [3]. For the 
relationship beetwen working frequency and input signal 
sampling frequency Fs/Fin in the system, value 200 is taken. 
The realization of half-band filter can be divided into the first 
three stages of decimation, with low number of coefficients 
and into the fourth stage, which comprises numerous 
coefficients. During filter implementation, only non-zero 
coefficients are used, along with filter symmetry, so the 
number of arithmetic operations is lowered 4 times when 
compared to direct FIR realization. Coefficients of interest are 
stored in ROM memory. 



 

  

 
Fig. 5.  Efficient FPGA implementation. 

 
Block diagram of implementation is given in Fig. 5. In 

order to achieve effective filter realization, branches E1(z) and 
E0(z) share mutual Xilinx dual port BRAM where all 235 
signal samples are stored. The yellow block in Fig. 5. named 
"Memory BRAM address and data enable control" is in 
charge of control of data write and read process from the 
memory, as well as of suitable data enable control signal 
which is active every second signal sample. On memory port 
A and memory port B, the first and 235th, the third and 233rd , 
etc. signal samples are simultaneously read, pair by pair, then 
they are added and multiplied with corresponding filter 
coefficients. Multiplier output is taken to accumulator. Trivial 
filter branch is implemented in such a way that the central 
signal sample is read from the same memory and by shifting 
the bit into the right side for one place, the operation of 
multiplication by 0.5 is achieved. 

In the first three stages, when non-zero elements and the 
symmetry of FIR filters is taken into account, the number of 
coefficients is in order 3, 5, 9, for these filters, so Distributed 
RAM (SliceM components on the Spartan 6) can be used for 
their implementation instead of BRAMs. 

This architecture can be used for all filters which fulfill the 
condition that Fs/Fin is larger than the number of non-zero and 
symmetrically different filter coefficients + 1. Apart from 
efficiency, the suggested architecture is also modular, i.e. with 
small changes, it can be used for all levels of decimation, 
various filter types and working frequencies of FPGAs as 
well.  

The input data type for signal samples is Fix18.17 (word-
length is 18 and the number of fractional bits is 17). Inputs for 
hardware-built in multipliers on Spartan 6 FPGAs are 18-bit 
wide (Fix18.0), with the result of multiplication operation of 
48 bit in length. For the accumulator (i.e. multiplier) output, 
48-bit data are used, so slicing of the bit is inevitable at the 
end of calculation. Furthermore, on adder output, the result is 

given by the format Fix19.17, so slicing one LSB bit is 
necessary. In every spot where bit slicing took place, a block 
"Bit slice" is used, which performs the slicing and rounding of 
the results. By this block, random value is added (0 or 1 for 
LSB) to the final result, so average value of quantization error 
is 0 [4]. Block diagram of this block is given in Fig. 6. On the 
desired length of slicing – Q, from initial data word length of 
Q+M, M≥1, value produced as concatenated zero constant of 
the length Q-1 and (Q+1)th bit from the initial word, is added. 
By adding these two values, the desired Q word length is 
achieved, with zero average value of the quantization error. 
Fig 7. shows the comparison of results achieved in MATLAB 
(float point arithmetic) and the results of the simulation of 
FPGA work (fixed point arithmetic). 
 

 
 
Fig. 6.  Rounding by truncation. 
 

TABLE I 
FPGA RESOURCES USED FOR HALF BAND FILTER DESIGN ON SPARTAN 6  

 

Component Used Available % 
Slices 79 15822 <1% 
BRAMs 2 536 <1% 
DSPs 1 180 <1% 



 

IV. ROUND-OFF NOISE ANALYSIS 

The results obtained by the single stage filter presented in 
the previous section are compared with the results obtained in 
MATLAB with double precision floating point arithmetic. 
The error of the output signal 
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is shown in Fig. 7. The sources of the error are quantitation of 
filter coefficients, and quantitation of arithmetic operations. 
The detailed MATLAB simulation is developed as a tool for 
investigating the effects of quantization. The simulation 
approach makes possible investigation of different 
quantization effects separately. There are three sources of 
arithmetic operations, and those effects can also be included 
or excluded form simulation. 

The quantization of each source is simulated by means of 
Monte Carlo simulation, and by means of semi-analytical 
approach [5]. Monte Carlo simulation requires repetition of 
the experiment with new set of input signals for each iteration. 
This approach is time-consuming, however, the implemented 
structure can be fully simulated. The semi-analytical approach 
is based on the assumptions about the distributions of error 
signals introduced by the quantization [6], [7]. Each point of 
quantization is modeled as an additional source of random 
signal with defined statistical parameters, amplitude 
distribution, mean and variation. The influence of the 
observed noise source at the system output is calculated 
analytically or numerically by propagating the source signal 
from its origin to the decimator output. Monte Carlo 
simulation can be used for adjustment of semi-analytical 
model. 
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Fig. 7.  Output signal error. 
 
As an example, power spectral densities of the noises 

introduced in each decimator stage as results of the 
quantization at the output of shifter, multiplier and adder are 
obtained by means of simulation. It should be noted that the 

noise introduced in the stage l is low-pass filtered by all filters 
of the stages l+1,…,L. Because of that, the influence of the 
last stage is dominant, Fig. 8. 
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Fig. 8.  PSD of the output noise signal. 

 

V. CONCLUSION 

The efficient FPGA implementation of decimator presented 
in this paper is based on multistage FIR filter design. The 
implementation is developed in a way that allows it to be 
change to meet different requirements, for example, different 
number of stages, or different filter lengths. The results 
presented in this paper are first step in detailed analysis of the 
quantization noise propagation in the case of multistage 
multirate systems.  
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