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Abstract— The two basic design parameters for polynomial-

based digital interpolation filters are number of polynomial-

segments defining the finite length of impulse response, and 

order of polynomials in each polynomial segment. The 

complexity of the implementation structure and frequency 

domain performance depend on these two parameters. This 

contribution compares two types of estimation formulae for 

length and polynomial order of polynomial-based filters for 

various types of requirements including attenuation in stopband, 

width of transitions band, deviation in passband, weighting in 

passband/stopband. 

 

Index Terms— Digital filters; Filter design; Polynomial-based 

filters; Farrow structure.  

 

I. INTRODUCTION 

THE digital polynomial-based interpolation filters are used 

in signal processing applications whenever it is required to 

calculate signal samples at arbitrary positions between 

existing samples. The impulse response of digital polynomial-

based interpolation filters is derived by using piecewise 

polynomial analogue model [1]. An underlying continuous-

time impulse response ha(t) has the following properties [1]; 

First, ha(t) is nonzero only in a finite interval 0≤t≤NT with N 

being an integer which determines the length of the filter. 

Second, in each subinterval nT ≤t<(n+1)T, for n= 0,1…, N-1, 

ha(t) is expressible as a polynomial of t of a given order M. 

Third, ha(t) is symmetric with respect to its middle point t = 

NT/2, to guarantee phase linearity of the resulting overall 

system. The advantage of the above impulse response is in the 

fact that the actual implementation can be efficiently 

performed by using the Farrow structure [2] or its 

modifications such as transposed Farrow structure, prolonged 

Farrow structure etc [1], [3]. The number of multipliers in any 

modification of Farrow structure is directly proportional to 

polynomial order M and number of polynomial segments N. 

The polynomial-based interpolation filters can be designed 

using time domain or frequency domain design methods [1]. 

The time-domain design methods are based on Lagrange and 

B-spline interpolations, where the approximating polynomial 

is fitted to the discrete-time samples. In the frequency domain 

design methods, the coefficients of the polynomials, i.e. 

coefficient of the Farrow structure, are optimized directly in 

the frequency domain [1], [3]. In all these design methods, 

there are two basic parameters that control performance of the 

 
Đorđe Babić is with the School of Computing (Računarski fakultet), 

University Union, Belgrade, Knez Mihailova 6/VI, 11000 Belgrade, Serbia. 

(e-mail: djbabic@raf.edu.rs). 

filter and its complexity. These two basic parameters are the 

number of polynomial segments N and polynomial order M. 

As stated above, polynomial order M and filter length N are 

directly proportional to the number of multipliers in Farrow 

based structure [1], [2]. Thus, the system complexity 

measured in number of operations is directly related to these 

two parameters. Furthermore, the system performance in the 

frequency domain measured by stopband attenuation and 

passband ripple is also related to N and M. Therefore, it is 

very important to estimate polynomial order M and filter 

length N according to given system parameters.  

Various order estimation formulae exist for FIR filters, for 

example Kaiser order estimation [4]. In the actual digital 

implementation, polynomial-based filters can be modeled as 

FIR filters [1], thus we can use similar methodology for 

analysis. The estimation formula for N, which can be found in 

[5] is good starting point for filter length N. In [6], written by 

the second author Babic et al., the estimation formulae for 

both N and M have been proposed. The conference paper [6], 

has been main motivation for research presented in [7] and 

[8]. However, the formulae presented in [6] are obtained using 

trial and error method, and they have some conditional 

restrictions. Namely, the estimation formulae of [6] cannot be 

used in the case when filter with narrow transition band is 

designed. In [7], the estimation formulae for the prolonged 

Farrow structure has been proposed. In [8], we have proposed 

more general and accurate formulae for estimation of 

polynomial order M and filter length N based on the system 

requirements including attenuation in stopband, width of 

transitions band, deviation in passband, weighting in 

passband/stopband. The formulae presented in [6] and [8] can 

save time for the filter designers, because they get suitable 

starting values for N and M for the given set of requirements. 

They can serve to estimate the filter complexity for given set 

of system requirements. 

In this paper, we compare the estimation formulae for the 

length N and polynomial order M given in [6] and [8]. The 

experimental results which are used for estimation are 

illustrated graphically together with estimation formulae. The 

formulae are also tested by means of design examples. 

II. REVIEW OF ESTIMATION FORMULAE FOR THE LENGTH N 

AND ORDER M OF POLYNOMIAL-BASED INTERPOLATION FILTER 

As mentioned above, the cost of realization, i.e. the number 

of multipliers, of a polynomial-based interpolation filter can 

be estimated by introducing the required values for N and M 

into design method [1], [2]. It would be very beneficial to 
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estimate N and M by only using the given specifications of the 

filter in the frequency domain. Similar order estimation 

formulae exist for FIR filters, for example Kaiser order 

estimation [4]. The formulae of [6] and [8] are obtained 

experimentally. Many filters were designed, by using different 

system specifications, in order to adapt the Kaiser formula to 

the polynomial-based case. The polynomial based filters are 

designed using minimax optimization routine explained in [1] 

for the following design parameters. The passband edge is 

varied from fp to F/2-fp with step equal to fp =0.05 

normalized to F, where F is output/input sampling rate in 

decimation/interpolation case. The stopband edge fs is 

determined according to case A specification defined in [1], 

thus fs=0.5 normalized to F. The weighting function W(f), 

which is used to differentiate precision of design in passband 

and stopband, is also varied from W(f)=[Wp Ws]=[1 0.1] to 

W(f)=[1 1000], where Wp and Ws are weights in passband and 

stopband region respectively. Finally, we used different 

values for the number of polynomial segments N ranging from 

N=2 to N=24 with step two, taking only even values of N. The 

polynomial order M takes values from M=0 to M=7 with unity 

step. In this way, in our experiment we use 9 different values 

of fp, five values of W(f), 12 values of N, and 8 values of M. 

All together, we have designed 9∙5∙12∙8=4320 filters. For each 

set of requirements, we have determined obtained 

performance in terms of passband ripple p, and stopband 

ripple s.  

The estimation formula for N, which has been presented in 

[6], is 
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where p and s are the maximum deviations of the amplitude 

response from unity for f[0,fp] and the maximum deviation 

from zero for fs, respectively. Here, x stands for the 

smallest integer which is larger or equal to x. It has been 

observed that in most cases the above estimation formula is 

rather accurate with only a 2% error. The formula above is 

valid for all three types of requirements, i.e., A, B, and C, as 

given in [1]. However, if the transition band is narrow, i.e., in 

the case when (fs­fp)/F≤0.1, the required value of N should be 

increased by 2. Further, in the case of very narrow transition 

band ((fs­fp)/F ≤0.05) the formula (1) cannot be used. The 

estimation formula for the number N of polynomial segments 

can be expressed in a different form: 
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where As=-20log10(s) is the required attenuation in stopband, 

and W=p/s represents weighting between required tolerances 

in passband and stopband. 

The polynomial order M to meet the specifications can be 

estimated using formula of [6] 
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It has been observed that if transition band is relatively 

large to the sampling frequency, that is when (fs-fp)/F ≥0.5, the 

required value of polynomial order M is lowered by one. The 

estimation formula cannot be used when the transition band is 

very small, i.e., in the case when (fs-fp)/F<0.1. However, even 

in this border situation required value of M is always smaller 

than Me given by (3). Thus, the estimation formula (3) for the 

polynomial order M can be used to estimate the upper border 

for M for all types of requirements. 

In [8], more precise formulae are presented. The following 

estimation formula has been proposed for the number of 

polynomial segments 
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where p and s are the maximum deviations of the amplitude 

response from unity for f[0, fp] and the maximum deviation 

from zero in stopbands, respectively, and w=1-log10(W). 

Similarly as in (1), here, x stands for the smallest integer 
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Fig. 1.  Case A specifications: The passband and stopband edges are at 
fp=0.4F and at fs=0.5F, and stopband weighting W=100. (a) The curves are 

shown for M equals 0 to 7. Dashed line is plot obtained from the estimation 

formula (2) for N . (b) The curves are shown for N equals 2 to 20. Dashed 
line is plot obtained from the estimation formula (3) for M. 
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which is larger or equal to x. It has been observed that in the 

most cases the above estimation formula is rather accurate. 

However, if the transition band is narrow, i.e., in the case 

when (fs­fp)/F≤0.1, the required value of N should be 

increased by 2.  

The estimation formula for polynomial order M in [8] has 

been expressed as: 
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where f=(fs-fp). It has been observed that if transition band is 

relatively large to the sampling frequency, that is when (fs-

fp)/F ≥0.5, the required value of polynomial order M can be 

lowered by one. The estimation formula cannot be used when 

the transition band is very small, i.e., in the case when (fs-fp)/F 

<0.1.  

III. DESIGN EXAMPLES 

This part gives several examples to illustrate the 

performance of the presented formulae.  

To illustrate this, the following specifications are 

considered. For the formulae presented in [6], Case A 

specifications are considered with passband and stopband 

edges at fp=0.4F and at fs=0.5F. Several filters have been 

designed in minimax sense with the passband weighting equal 

to unity and stopband weightings of W=100. The degree of the 

polynomial in each subinterval M varies from 0 to 7. The 

number of intervals N varies from 2 to 20. Recall that N is an 

even integer. Figure 1 give the results for Case A and 

formulae of [6]. It can be observed that the estimation 

formulae (2) and (3) are relatively good, as they estimate the 

border performance for the given set of requirements. Dashed 

lines in Figs 1 are obtained by using formula (2) in (a) plot 

and (3) in (b) plot. 

For the purpose of illustration of formulae presented in [8], 

we use the following specifications: Case A specifications 

with stopband edge at fs=0.5, passband edge and stopband 

weighting are at fp=0.15F and W=0.1, in the first example and  

fp=0.3F and W=10, in the second example. The curves for 

both examples are shown in Fig. 2 (a) and (b) respectfully, for 

N equals 2 to 24. Dashed lines in Fig 2 is obtained from the 

estimation formula for N shown in (4).  A dashed line in Fig. 
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Fig.2 Case A specifications: The curves are shown for M equals 0 to 7. 
Dashed line is obtained from the estimation formula for N shown in (4). The 

stopband edge is at fs=0.5 normalized to F, passband edge and stopband 

weighting are at: (a) fp=0.15F and W=0.1; (b) fp=0.3F and W=10. 
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Fig.3 Case A specifications: The curves are shown for N equals 2 to 24. 
Dashed line is obtained from the estimation formula for M shown in (5). The 

stopband edge is at fs=0.5, passband edge and stopband weighting are at (a) 

fp=0.15F and W=0.1; (b) fp=0.3F and W=10. 

 



 

3 is a plot obtained from the estimation formula for M shown 

in (5). One can see that the dashed line represents the border 

values of M when performance saturates as explained above. 

In last example, we can estimate performance of the 

proposed estimation formulae. The following system 

requirements are considered: passband and stopband edges are 

at fp=0.4F and at fs=0.5F, the filter is to be designed in 

minimax sense with stopband attenuation As=60dB, passband 

weighting equal to unity and stopband weightings of W=100.  

In order to design filter according to specifications given 

above, first, we use (2) and (4) to estimate the number of 

intervals for the Case A specifications. Both formulae give the 

same result N=18. The degree of the polynomial in each 

subinterval M=4 is estimated using (3) and (5). We design 

filter using obtained N and M with earlier defined system 

requirements. Figure 4 gives the frequency response for Case 

A filter with achieved stopband attenuation As=59.5dB and 

passband ripple p=0.1065 in linear scale. It can be observed 

that both estimation formulae are relatively good, as they 

estimate the border performance for the given set of 

requirements. 

IV. CONCLUSION 

In this paper, we compare the estimation formulae for the 

number of polynomial segments N and the polynomial order 

M of polynomial-based filter which are given in [6] and [8]. It 

has been shown that both sets of the estimations formulae give 

the satisfactory performance of the filter for the given set of 

specifications. However, the estimation formulae given in [8] 

have slightly better performance, especially if system 

requirements are in border areas. Formulae for N and M can 

be used to estimate the starting value of these two parameters 

in minimax optimization used to design the Farrow structure. 

This is a significant information which can save time for filter 

designers. Furthermore, the formulae for N and M can be used 

to estimate implementation costs of the Farrow based filters 

for the given set of requirements. The formulae can also be 

used to estimate implementation costs of multistage sampling 

rate converters containing Farrow filter. Estimation formulae 

for Case B and Case C requirements with minimax 

optimization, as well as, least-mean-square optimization are 

part of the future work. 
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Fig 4. Design Example: The frequency domain performance of filter whose 

parameters are estimated using the presented formulae. The filter 

specifications are: stopband attenuation As=60dB, passband weighting equal 
to unity and stopband weighting is W=100, passband edge fp=0.4F. Case A 

filter of length N=18, and M=4 with achieved As=59.5dB and p=0.1065. 

 




