
 

 
Abstract — Memory intensive problems are a group of 

problems which require a lot more access and work with the 

memory in regard to computing problems. One example of such 

is a multidimensional (2D and 3D) FDTD algorithm which 

served as a motivation for this paper. To cope with the specifics of 

memory intensive problems, the most common solutions include 

invoking software parallelism and/or making improvements to 

the current hardware or creating a completely new one. The 

principle chosen by the authors was to use the programmability 

of an FPGA in order to achieve maximal memory bandwidth 

with a lower price and power consumption. To realize such a 

specific architecture an appropriate chip is required. The goal of 

this paper is to describe a script used to find an optimal FPGA 

based on the search criteria – highest achievable memory 

bandwidth per price.   
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I. INTRODUCTION 

FDTD (Finite-difference time-domain) is a powerful 

algorithm for the modeling of electromagnetic field. It 

provides a direct time-domain solution of Maxwell’s 

Equations in differential form by discretizing both the 

physical region and time interval using a uniform grid. Even 

though the method was introduced in the year 1966 [1], it was 

not widely used until the last decade due to limited computing 

resources [2]. Its areas of application include mine detection 

[3], microwave tomography [4], electromagnetic 

compatibility, antenna design and more. FDTD is a memory 

intensive problem and as such has sparked an interest to many 

authors in the past. To improve overall performance, the 

algorithm has already been successfully implemented on 

multi-core architectures [5]. Additional improvements were 

made by using GPUs [6] for computing, adding additional 

FPGAs into the mix as well as using fixed point arithmetic 

[7].   

One of the issues with these platforms is that they are  

compute oriented – they can do multiple computing 

operations per one memory load resulting in a lot of time  

spent idle waiting for the much slower memory. The amount 

of data required for FDTD is huge, so misses in the cache are 
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bound to happen because the entire problem simply cannot 

efficiently fit into the cache of existing architectures.  

The idea behind this paper is to find an alternative efficient 

solution with minimized time spent idle during the 

computation process. Less idle time means less power 

consumption and further reduction of the overall cost. 

Existing available architectures are predominantly compute 

oriented so when coping with memory intensive problems, 

their full potential is quite suppressed. On the other hand, 

FPGAs could be utilized and configured in a “smart” way 

which could ensure better memory management.  

As far as pricing goes, there are a lot of possible options on 

the market. What is certain is that both the CPUs and GPUs 

require more silicon surface. Also, when taking into 

consideration the long term costs, the CPUs and GPUs 

generally use much more power than an FPGA. In case of a 

dedicated hardware, after a period of several years the costs of 

electric power are no longer insignificant. 

II. SOLUTION 

Memory bandwidth is the rate at which data can be read or 

stored by the processor from/to the memory, usually measured 

in bytes per second. It is the product of the following 

parameters: memory clock frequency, number of transfers per 

clock, width of the bus and the number of buses. For example, 

a standard DDR3 DIMM (dual in-line memory module) has 

the following characteristics: I/O bus clock ranging from 400 

to 1066 MHz, 2 transfers per clock (one on the rising and one 

on the falling edge), has interface width of 8 bytes and has 1 

interface, achieving maximum theoretical bandwidth ranging 

from 6.4 to over 17 GB/s. For the purpose of this paper, only 

DDR3 DIMMs and DDR3 chips were taken into 

consideration. The main reason behind this decision is the 

lack of support for DDR4 modules (on the FPGA side) as well 

as better performance of DDR3 modules compared to DDR2. 

As a side note, DDR3 DIMMs are preferable due to their 

advantage of being ubiquitous and easy accessible on the 

market when compared to DDR3 chips and SRAM. The 

challenge was finding an FPGA which could make use of the 

biggest amount of DDR3 DIMMs while at the same time 

costing the least amount of money. 

The starting point for solving this problem was using 

Octopart [8], a search engine for various electronic 

components. Its database consists of hundreds of distributors, 

thousands of manufacturers as well as a huge number of 

available components. The search results for the query FPGA 

contains over 300.000 results. Even for a rather specific query 

such as Kintex (one of the FPGA chip families), there are 
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several thousand components. Not the mention that the 

variations in the price range as well as performance and 

availability are also huge. 

 When choosing a component, there are certain criteria 

which are more important than the others. Considering 

memory intensive problems, of highest interest is the 

maximum achievable memory bandwidth per price. This 

parameter can be obtained by counting the number of pins 

which could be connected to a DDR3 DIMM, taking into 

account their speed and their layout as well. The goal is to 

find a chip with the best ratio of price and matching pins. For 

example, a certain chip can be cheaper but have only enough 

pins for 1 module, however if there is a chip which has 

enough pins for 2 modules and does not cost twice as much, 

its ratio is better.  

For a group of pins to be compatible with the DDR3 

module, certain conditions have to be fulfilled. 10 pins are 

needed per 1 byte group (8 are used for 8 data bits, and 2 are 

used for data strobe signals). Each bank should have 4 byte 

groups, and there should be the highest number of banks 

possible in the same column (to be on the same side of the 

FPGA). 3 byte groups are needed for address and control 

signals, disregarding the data width, so 1 bank is enough for 1 

byte of data. 2 banks allow 4 bytes of transfer (leaving 1 bank 

unused) because the 3 byte groups from bank 1 can be used to 

address the data from this bank as well. 3 banks allow 8 bytes 

which is desired due to the matching interface width with the 

standard DDR3 DIMM. This is shown in figure 1. The Xilinx 

software does not allow connecting banks from different 

columns to the same DDR3 DIMM. This is related to the 

routing problems which can occur. 
 

 

Figure 1 – Optimal and sub-optimal pin layout 

To solve the bandwidth per price issue, a script was written. 

Its first task is to read from the database created from the 

manufacturer’s data-sheets and make the corresponding 

queries. At the moment of writing of this paper, all the 

information came from Xilinx due to the author’s familiarity 

with it. The database has all the necessary information about a 

large number of FPGAs such as name, package, family, speed, 

number of logic circuits, number of PCI buses, DSPs, RAM 

blocks and many more. Queries are generated from these data 

and sent to Octopart over the Web. The results are first placed 

in the main table and the unavailable products (those out of 

stock) are removed. Afterwards, for the remaining FPGAs 

(over 170 in total) in the table, other information is analyzed.  

The next most significant factor is the pin layout as well as 

the type of these pins. High performance (HP) pins are better 

than high range (HR) pins when it comes to memory 

bandwidth, and faster FPGAs can work together with DDR3 

modules on a higher clock frequency. All this information is 

acquired from the pin layout files which are also available 

from Xilinx.  

The next step is to find groups of 3 banks on the same side 

of the chip. This is important due to the compatibility with the 

standard DDR3 interfaces as mentioned before. If there are 

only 1 or 2 banks available, then the DDR3 chips have to be 

used. They have a few drawbacks when compared to DDR3 

DIMMs. DDR3 chips have a worse price / bandwidth ratio 

than the modules (due to the popularity and mass production 

of DDR3 DIMMs they have become a commodity) and are 

generally harder to solder than the DDR3 DIMM module 

socket. 

The last step is to calculate the ratio of price of the FPGA 

and the maximal theoretical bandwidth. This parameter is 

created by first trying to connect as many DDR3 DIMMs as 

possible. Afterwards, when there are no more available groups 

of 3 banks, the rest of the groups are connected to the smaller, 

less price efficient DDR3 chips. 

III. RESSULTS AND DISCUSSION  

After the table has been sorted, the analysis shows that the 

optimal Xilinx FPGA is the XC7A15T, in the 1FGG484 

package, Artix-7 familly, distributed by Digi-Key. It is a small 

FPGA which can host 1 DDR3 DIMM and 1 32 bit DDR 

interface working on the lowest frequency of 400 MHz. 

Together, they have a maximal theoretical bandwidth of 9.6 

GB/s at the price of 38 $ (at the time this paper was written). 

The next several best candidates are all from the same family 

and package and achieve the same bandwidth. They have 

other better characteristics such as better working temperature 

range, more available logic but this information is not relevant 

for the solution of the problem. 

The next best FPGA which offers a bigger bandwidth is the 

Kintex-7 XC7K160T from the FBG676 package. It can use 

up to 2 DDR3 DIMMs working at a higher frequency than 

those working with the XC7A15T. The maximal bandwidth 

for this FPGA is 23.4 GB/s but this does come with quite a 

higher price of 235 $. 

An interesting observation can be made at this point. We 

can see that for 2.43 times bigger bandwidth, we have to pay 

6.18 times more, not to mention that this is only the price of 

the chip itself, not including the other expenses related to the 

printed circuit board (PCB). The XC7K160T being a bigger 

FPGA requires a more sofisticated PCB which costs more as 

well. On the other hand, when purchasing more of the same 



 

FPGAs and putting them on a single PCB the price stays 

roughly the same. This means that 4 smaller and cheaper 

FPGAs could be used togather to achieve a higher bandwidth 

than 1 bigger and more expensive chip. To put this into 

perspective, 4 XC7A15Ts cost 152 $ and have a theoretical 

bandwidth of 38.4 GB/s. That means 64% more throughput 

for 35% less money.  

 

Name Price [$] 
Bandwith 

[MBps] 

Ratio 

[MBps/$] 

XC7A15T-

1FGG484C 
37,940112 9600 253,0303548 

XC7K160T-

2FBG676C 
234,612 23456 99,97783575 

XC7V2000T-

1FLG1925C 
1085,9184 102400 94,29806144 

Table 1 – Summary of the best 3 candidates 

As shown in Table 1, we can see that this trend continues as 

we go further down the table. After the XC7K160T, the next 

big increase in bandwidth comes with the Virtex-7 

XC7V2000T from the FLG1925 package. This big FPGA can 

host up to 8 DDR3 DIMMs working at 800 MHz and 

achieveing the bandwidth of 102.4 GB/s but at a price of 1086 

$, not including the price for the PCB. When compared to the 

others on this list, Virtex has a slightly worse price / 

bandwidth ratio than Kintex and more than double worse than 

the Artix, shown in figure 2. This further suggests that for 

memory intensive problems, it is more efficient to have 

several smaller FPGAs than just one big one. 
 

 

Figure 2 – Bandwidth per price ratio 

When comparing GPUs to FPGAs several things have to be 

taken into consideration. Much like with the DDR3 DIMMs 

and DDR3 chips relationship, GPUs are a commodity and due 

to their widespread usage in PCs tend to be more affordable 

for the amount of computations they can do. FPGAs on the 

other side are not so widely used. If we approximate GPU’s 

Gflops (floating point operations) with FPGA’s GMAC 

(multiply and accumulate) even the modest GPUs such as a 

Radeon R7 360 outperforms all of the FPGAs. The main 

feature which gives the GPUs the edge is the fact that the 

GPU is an ASIC, having GDDR5 (graphics double data rate 

type 5 RAM) speed as well as a larger number of available 

pins. All these factors contribute to the GPUs superior 

bandwidth. On the flip side, they consume much more power. 

This should be the main area of concern because the aim is to 

create a dedicated architecture with a lifetime of several years. 

After years of work, the price of electricity adds up giving the 

FPGAs an advantage. However, it would take several decades 

for the electricity price to become a factor and make the 

FPGA a better option.  

The question that arises from this is the following: what can 

be done to improve the FPGA bandwidth? The answer is some 

kind of data compression where the FPGA could be very 

effective. If we reduce the amount of data and not lose out on 

the precision of the algorithm, we would “improve” the 

bandwidth 4 times, thus putting the FPGA more in line with 

the GPU. If this criterion is met, then the FPGA becomes a 

better solution after 6-8 years which is acceptable and opens 

up more room for improvement. 

IV. CONCLUSION 

The main contribution of this work is a strong foundation 

for future research. As seen from the previous section, the 

optimal FPGA from Xilinx (when taking into account only the 

price of the chip) for solving memory intensive problems is 

XC7A15T-1FGG484. However, if more bandwidth is 

required, it can be obtained using the XC7K160T or 

XC7V2000T but at a higher cost. Interesting observation is 

that with more bandwidth prices of the FPGA rise faster than 

linear.  

If the problem can be geometrically decomposed (such as 

FDTD), than more computing units could be used 

simultaneously. Each individual smaller FPGA could run its 

own simulation so the entire problem would be divided into 

several smaller parts. These simulations would be running in 

parallel instead of being time-multiplexed in a larger and more 

expensive FPGA, thus reducing execution time. With this 

information, a fitting architecture can be designed using 

several smaller FPGAs. The benefits of this option are: a 

bigger bandwidth, less initial costs for the components and a 

simpler PCB which further reduces the costs. The drawback is 

more work required to synchronize and coordinate the 

FPGAs. 

Future work branches off in several ways. One obvious 

path is optimization of the bandwidth. This would include 

mainly some sort of data compression which is needed in 

order to reduce the magnitude of data flow. It is mandatory in 

order to come closer to the GPU margin. When this is 

achieved, the results have to be compared with the refferent 

version to make sure that the precission is not lost significally.  

The next path is the definition of a new type of architecture 

which would utilize the possibly large memory bandwidth 

comprising of several smaller FPGAs and DDR3 DIMMs 

alongside the optimized bandwidth. This would include the 

architecture design and implementation. An alternative would 

be an ASIC design. Its size could be relatively small due to 

the fact that FDTD computation does not require a big amount 

of logic. It would, however, utilize many pins in order to use 



 

as many DIMMs as possible. The tranzition from FPGA to 

ASIC would also be easier than to just start with the ASIC 

from scratch. Again, after the completion, its results should be 

compared with the existing solutions in order to find out if 

this idea is feasable and applicable. 

Finally, improvements can be made in the script as well. 

Different kinds of analysis and conclusions can be made with 

this script such as finding the optimal FPGA with the DSPs 

per cost. Other manufacturers such as Altera should be added 

as well and perhaps even an entire application can be made as 

a helping tool when searching for optimal components.   
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