


Abstract — Memory intensive problems are a group of

problems which require a lot more access and work with the

memory in regard to computing problems. One example of such

is a multidimensional (2D and 3D) FDTD algorithm which

served as a motivation for this paper. To cope with the specifics of

memory intensive problems, the most common solutions include

invoking software parallelism and/or making improvements to

the current hardware or creating a completely new one. The

principle chosen by the authors was to use the programmability

of an FPGA in order to achieve maximal memory bandwidth

with a lower price and power consumption. To realize such a

specific architecture an appropriate chip is required. The goal of

this paper is to describe a script used to find an optimal FPGA

based on the search criteria – highest achievable memory

bandwidth per price.

Key words — FPGA, FDTD, memory intensive problems,

component selection, hardware design

I. INTRODUCTION

FDTD (Finite-difference time-domain) is a powerful

algorithm for the modeling of electromagnetic field. It

provides a direct time-domain solution of Maxwell’s

Equations in differential form by discretizing both the

physical region and time interval using a uniform grid. Even

though the method was introduced in the year 1966 [1], it was

not widely used until the last decade due to limited computing

resources [2]. Its areas of application include mine detection

[3], microwave tomography [4], electromagnetic

compatibility, antenna design and more. FDTD is a memory

intensive problem and as such has sparked an interest to many

authors in the past. To improve overall performance, the

algorithm has already been successfully implemented on

multi-core architectures [5]. Additional improvements were

made by using GPUs [6] for computing, adding additional

FPGAs into the mix as well as using fixed point arithmetic

[7].

One of the issues with these platforms is that they are

compute oriented – they can do multiple computing

operations per one memory load resulting in a lot of time

spent idle waiting for the much slower memory. The amount

of data required for FDTD is huge, so misses in the cache are



 Stefan Pijetlović – RT-RK Institute for Computer Based Systems,

Bajči Žilinskog bb, 21000 Novi Sad, Serbia (e-mail: stefan.pijetlovic@rt-

rk.com).

 Miloš Subotić – RT-RK Institute for Computer Based Systems,

Radnička 30, 21000 Novi Sad, Serbia (e-mail: milos.subotic@rt-rk.com).

 Nebojša Pjevalica – University of Novi Sad, Faculty of Technical
Sciences, Computing and Control Engineering Dept. Trg Dositeja

Obradovića 6, 21000 Novi Sad, Serbia (e-mail: pjeva@uns.ac.rs).

bound to happen because the entire problem simply cannot

efficiently fit into the cache of existing architectures.

The idea behind this paper is to find an alternative efficient

solution with minimized time spent idle during the

computation process. Less idle time means less power

consumption and further reduction of the overall cost.

Existing available architectures are predominantly compute

oriented so when coping with memory intensive problems,

their full potential is quite suppressed. On the other hand,

FPGAs could be utilized and configured in a “smart” way

which could ensure better memory management.

As far as pricing goes, there are a lot of possible options on

the market. What is certain is that both the CPUs and GPUs

require more silicon surface. Also, when taking into

consideration the long term costs, the CPUs and GPUs

generally use much more power than an FPGA. In case of a

dedicated hardware, after a period of several years the costs of

electric power are no longer insignificant.

II. SOLUTION

Memory bandwidth is the rate at which data can be read or

stored by the processor from/to the memory, usually measured

in bytes per second. It is the product of the following

parameters: memory clock frequency, number of transfers per

clock, width of the bus and the number of buses. For example,

a standard DDR3 DIMM (dual in-line memory module) has

the following characteristics: I/O bus clock ranging from 400

to 1066 MHz, 2 transfers per clock (one on the rising and one

on the falling edge), has interface width of 8 bytes and has 1

interface, achieving maximum theoretical bandwidth ranging

from 6.4 to over 17 GB/s. For the purpose of this paper, only

DDR3 DIMMs and DDR3 chips were taken into

consideration. The main reason behind this decision is the

lack of support for DDR4 modules (on the FPGA side) as well

as better performance of DDR3 modules compared to DDR2.

As a side note, DDR3 DIMMs are preferable due to their

advantage of being ubiquitous and easy accessible on the

market when compared to DDR3 chips and SRAM. The

challenge was finding an FPGA which could make use of the

biggest amount of DDR3 DIMMs while at the same time

costing the least amount of money.

The starting point for solving this problem was using

Octopart [8], a search engine for various electronic

components. Its database consists of hundreds of distributors,

thousands of manufacturers as well as a huge number of

available components. The search results for the query FPGA

contains over 300.000 results. Even for a rather specific query

such as Kintex (one of the FPGA chip families), there are

An approach to finding an optimal FPGA for

memory intensive problems
Stefan Pijetlović, Student Member, IEEE, Miloš Subotić, Student Member, IEEE, Nebojša Pjevalica,

Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. EKI1.6.1-4

several thousand components. Not the mention that the

variations in the price range as well as performance and

availability are also huge.

 When choosing a component, there are certain criteria

which are more important than the others. Considering

memory intensive problems, of highest interest is the

maximum achievable memory bandwidth per price. This

parameter can be obtained by counting the number of pins

which could be connected to a DDR3 DIMM, taking into

account their speed and their layout as well. The goal is to

find a chip with the best ratio of price and matching pins. For

example, a certain chip can be cheaper but have only enough

pins for 1 module, however if there is a chip which has

enough pins for 2 modules and does not cost twice as much,

its ratio is better.

For a group of pins to be compatible with the DDR3

module, certain conditions have to be fulfilled. 10 pins are

needed per 1 byte group (8 are used for 8 data bits, and 2 are

used for data strobe signals). Each bank should have 4 byte

groups, and there should be the highest number of banks

possible in the same column (to be on the same side of the

FPGA). 3 byte groups are needed for address and control

signals, disregarding the data width, so 1 bank is enough for 1

byte of data. 2 banks allow 4 bytes of transfer (leaving 1 bank

unused) because the 3 byte groups from bank 1 can be used to

address the data from this bank as well. 3 banks allow 8 bytes

which is desired due to the matching interface width with the

standard DDR3 DIMM. This is shown in figure 1. The Xilinx

software does not allow connecting banks from different

columns to the same DDR3 DIMM. This is related to the

routing problems which can occur.

Figure 1 – Optimal and sub-optimal pin layout

To solve the bandwidth per price issue, a script was written.

Its first task is to read from the database created from the

manufacturer’s data-sheets and make the corresponding

queries. At the moment of writing of this paper, all the

information came from Xilinx due to the author’s familiarity

with it. The database has all the necessary information about a

large number of FPGAs such as name, package, family, speed,

number of logic circuits, number of PCI buses, DSPs, RAM

blocks and many more. Queries are generated from these data

and sent to Octopart over the Web. The results are first placed

in the main table and the unavailable products (those out of

stock) are removed. Afterwards, for the remaining FPGAs

(over 170 in total) in the table, other information is analyzed.

The next most significant factor is the pin layout as well as

the type of these pins. High performance (HP) pins are better

than high range (HR) pins when it comes to memory

bandwidth, and faster FPGAs can work together with DDR3

modules on a higher clock frequency. All this information is

acquired from the pin layout files which are also available

from Xilinx.

The next step is to find groups of 3 banks on the same side

of the chip. This is important due to the compatibility with the

standard DDR3 interfaces as mentioned before. If there are

only 1 or 2 banks available, then the DDR3 chips have to be

used. They have a few drawbacks when compared to DDR3

DIMMs. DDR3 chips have a worse price / bandwidth ratio

than the modules (due to the popularity and mass production

of DDR3 DIMMs they have become a commodity) and are

generally harder to solder than the DDR3 DIMM module

socket.

The last step is to calculate the ratio of price of the FPGA

and the maximal theoretical bandwidth. This parameter is

created by first trying to connect as many DDR3 DIMMs as

possible. Afterwards, when there are no more available groups

of 3 banks, the rest of the groups are connected to the smaller,

less price efficient DDR3 chips.

III. RESSULTS AND DISCUSSION

After the table has been sorted, the analysis shows that the

optimal Xilinx FPGA is the XC7A15T, in the 1FGG484

package, Artix-7 familly, distributed by Digi-Key. It is a small

FPGA which can host 1 DDR3 DIMM and 1 32 bit DDR

interface working on the lowest frequency of 400 MHz.

Together, they have a maximal theoretical bandwidth of 9.6

GB/s at the price of 38 $ (at the time this paper was written).

The next several best candidates are all from the same family

and package and achieve the same bandwidth. They have

other better characteristics such as better working temperature

range, more available logic but this information is not relevant

for the solution of the problem.

The next best FPGA which offers a bigger bandwidth is the

Kintex-7 XC7K160T from the FBG676 package. It can use

up to 2 DDR3 DIMMs working at a higher frequency than

those working with the XC7A15T. The maximal bandwidth

for this FPGA is 23.4 GB/s but this does come with quite a

higher price of 235 $.

An interesting observation can be made at this point. We

can see that for 2.43 times bigger bandwidth, we have to pay

6.18 times more, not to mention that this is only the price of

the chip itself, not including the other expenses related to the

printed circuit board (PCB). The XC7K160T being a bigger

FPGA requires a more sofisticated PCB which costs more as

well. On the other hand, when purchasing more of the same

FPGAs and putting them on a single PCB the price stays

roughly the same. This means that 4 smaller and cheaper

FPGAs could be used togather to achieve a higher bandwidth

than 1 bigger and more expensive chip. To put this into

perspective, 4 XC7A15Ts cost 152 $ and have a theoretical

bandwidth of 38.4 GB/s. That means 64% more throughput

for 35% less money.

Name Price [$]
Bandwith

[MBps]

Ratio

[MBps/$]

XC7A15T-

1FGG484C
37,940112 9600 253,0303548

XC7K160T-

2FBG676C
234,612 23456 99,97783575

XC7V2000T-

1FLG1925C
1085,9184 102400 94,29806144

Table 1 – Summary of the best 3 candidates

As shown in Table 1, we can see that this trend continues as

we go further down the table. After the XC7K160T, the next

big increase in bandwidth comes with the Virtex-7

XC7V2000T from the FLG1925 package. This big FPGA can

host up to 8 DDR3 DIMMs working at 800 MHz and

achieveing the bandwidth of 102.4 GB/s but at a price of 1086

$, not including the price for the PCB. When compared to the

others on this list, Virtex has a slightly worse price /

bandwidth ratio than Kintex and more than double worse than

the Artix, shown in figure 2. This further suggests that for

memory intensive problems, it is more efficient to have

several smaller FPGAs than just one big one.

Figure 2 – Bandwidth per price ratio

When comparing GPUs to FPGAs several things have to be

taken into consideration. Much like with the DDR3 DIMMs

and DDR3 chips relationship, GPUs are a commodity and due

to their widespread usage in PCs tend to be more affordable

for the amount of computations they can do. FPGAs on the

other side are not so widely used. If we approximate GPU’s

Gflops (floating point operations) with FPGA’s GMAC

(multiply and accumulate) even the modest GPUs such as a

Radeon R7 360 outperforms all of the FPGAs. The main

feature which gives the GPUs the edge is the fact that the

GPU is an ASIC, having GDDR5 (graphics double data rate

type 5 RAM) speed as well as a larger number of available

pins. All these factors contribute to the GPUs superior

bandwidth. On the flip side, they consume much more power.

This should be the main area of concern because the aim is to

create a dedicated architecture with a lifetime of several years.

After years of work, the price of electricity adds up giving the

FPGAs an advantage. However, it would take several decades

for the electricity price to become a factor and make the

FPGA a better option.

The question that arises from this is the following: what can

be done to improve the FPGA bandwidth? The answer is some

kind of data compression where the FPGA could be very

effective. If we reduce the amount of data and not lose out on

the precision of the algorithm, we would “improve” the

bandwidth 4 times, thus putting the FPGA more in line with

the GPU. If this criterion is met, then the FPGA becomes a

better solution after 6-8 years which is acceptable and opens

up more room for improvement.

IV. CONCLUSION

The main contribution of this work is a strong foundation

for future research. As seen from the previous section, the

optimal FPGA from Xilinx (when taking into account only the

price of the chip) for solving memory intensive problems is

XC7A15T-1FGG484. However, if more bandwidth is

required, it can be obtained using the XC7K160T or

XC7V2000T but at a higher cost. Interesting observation is

that with more bandwidth prices of the FPGA rise faster than

linear.

If the problem can be geometrically decomposed (such as

FDTD), than more computing units could be used

simultaneously. Each individual smaller FPGA could run its

own simulation so the entire problem would be divided into

several smaller parts. These simulations would be running in

parallel instead of being time-multiplexed in a larger and more

expensive FPGA, thus reducing execution time. With this

information, a fitting architecture can be designed using

several smaller FPGAs. The benefits of this option are: a

bigger bandwidth, less initial costs for the components and a

simpler PCB which further reduces the costs. The drawback is

more work required to synchronize and coordinate the

FPGAs.

Future work branches off in several ways. One obvious

path is optimization of the bandwidth. This would include

mainly some sort of data compression which is needed in

order to reduce the magnitude of data flow. It is mandatory in

order to come closer to the GPU margin. When this is

achieved, the results have to be compared with the refferent

version to make sure that the precission is not lost significally.

The next path is the definition of a new type of architecture

which would utilize the possibly large memory bandwidth

comprising of several smaller FPGAs and DDR3 DIMMs

alongside the optimized bandwidth. This would include the

architecture design and implementation. An alternative would

be an ASIC design. Its size could be relatively small due to

the fact that FDTD computation does not require a big amount

of logic. It would, however, utilize many pins in order to use

as many DIMMs as possible. The tranzition from FPGA to

ASIC would also be easier than to just start with the ASIC

from scratch. Again, after the completion, its results should be

compared with the existing solutions in order to find out if

this idea is feasable and applicable.

Finally, improvements can be made in the script as well.

Different kinds of analysis and conclusions can be made with

this script such as finding the optimal FPGA with the DSPs

per cost. Other manufacturers such as Altera should be added

as well and perhaps even an entire application can be made as

a helping tool when searching for optimal components.

ACKNOWLEDGEMENT

This project was partially supported by the Ministry of

Education, Science and Technological Development of the

Republic of Serbia under the grant TR32029, year 2017.

REFERENCES

[1] K. Yee, “Numerical solution of initial boundary value problems

involving Maxwell’s equations in isotropic media”, IEEE Trans.

Antennas and Propagation, 16 (1966), pp. 302–307.
[2] W. Chen, P. Kosmas M. Leeser, C. Rappaport, “An FPGA

implementation of the two-dimensional finite-difference time-domain

(FDTD) algorithm”, Proceedings of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate arrays, ACM,

February 2004.

[3] P. Kosmas, Y. Wang, and C. Rappaport, “Three-Dimensional FDTD
Model for GPR Detection of Objects Buried in Realistic Dispersive

Soil”, SPIE Aerosense Conference, Orlando, FL, April 2002, pp.330–

338.

[4] S. Noghanian, A. Sabouni, T. Desell, A. Ashtari, Microwave

Tomography - Global Optimization, Parallelization and Performance

Evaluation, Springer 2014.
[5] M. Naylor, P.J. Fox, A.T. Markettos, S.W. Moore, “Managing the FPGA

memory wall: Custom computing or vector processing?”, Field

Programmable Logic and Applications (FPL), 23rd International
Conference on (pp. 1-6). IEEE September 2013,.

[6] S. Che, J. Li, J.W. Sheaffer, K. Skadron, J. Lach, “Accelerating

compute-intensive applications with GPUs and FPGAs”, Application
Specific Processors, 2008. SASP 2008. Symposium on (pp. 101-107).

IEEE. June 2008.

[7] W. Chen, “Acceleration of the 3D FDTD Algorithm in Fixed-point
Arithmetic using Reconfigurable Hardware” Ph.D. dissertation, The

Department of Electrical and Computer Engineering, Northeastern

University, Boston, Massachusetts, August 2007.
[8] Octopart, https://octopart.com, loaded on 5.4.2017.

