



Abstract—SchematicSolver is an application for symbolic-
numeric simulation, analysis and implementation of the linear
continuous-time systems and linear or nonlinear digital systems
and algorithms. In order to provide for this application to be
used in the same environment (the computer algebra system
Mathematica), as other built-in functions, the strict architecture
of folders and files was developed. Instead of using development
platforms that are usually used in other software environments,
the whole methodology is based on the Wolfram language. The
proposed methodology is applicable for small and medium sized
application.

Index Terms—Wolfram language; computer algebra system;

analog systems; digital systems.

I. INTRODUCTION

PRODUCTION of application software should follow the
general principles but the details may be unique in some
specific environments. These principles are quite different
than that for the fast prototyping and rapid exploration. The
code should be divided into smaller packages and bounded
into application. As a standalone product the application can
be delivered to users. Computer Algebra System (CAS), such
as Mathematica [1], may require additional principles, for
example to provide a documentation system that works with
other Mathematica applications and to integrate within the
Documentation Center. Although application developers can
use additional tools in Mathematica, for example Wolfram
Workbench, this is not quite appropriate for developers that
are using only Wolfram language and with lack of skills in
traditional programing. This can be a significant barrier for
developers that do not have experience with other
development platforms, for example Eclipse, that are very
popular in software engineering.

The third party products and specific platforms may work
with some versions of targeted environment, but it may not be
fully compatible with the most recent versions. It is not
unusual to have a new software version each year, with many
new additional features but also with changed functionality of
built-in commands. This is especially true with the formal
beta testing versions.

Miroslav Lutovac is with Singidunum University, Danijelova 32, 11000

Belgrade, Serbia (e-mail: mlutovac@singidunum.ac.rs).
Vladimir Mladenović is with Univ. of Kragujevac, Faculty of Technical

Sciences, Čačak, Serbia (e-mail: vladimir.mladenovic@ftn.kg.ac.rs).
Maja Lutovac Banduka is with Lola Institute, Belgrade, Serbia, (e-mail:

majalutovac@yahoo.com).

Powerful software systems such as Mathematica can do
almost everything that is possible on standard developing
platforms, and the development of application can be
accomplished using Wolfram language only, for example
using ApplicationMaker [2]. The main purpose of this paper is
to present an original approach for developing applications in
Mathematica environment using Wolfram language.
ApplicationMaker is a Mathematica package that facilitates
the integration of projects and applications with the
Mathematica Documentation Center without need to use the
Wolfram Workbench and Eclipse development platform.

The application code was formerly released for
Mathematica version 8, and it was tested with all versions up
to Mathematica 11. One can conclude that ApplicationMaker
is a bit outdated but it still works properly and do not require
fixes.

II. SCHEMATICSOLVER

SchematicSolver is a powerful and easy-to-use schematic
capture, symbolic processing, symbolic analysis, and
implementation tool in Mathematica [3]. Using
SchematicSolver's unique capabilities and mixed symbolic-
numeric processing, you can perform fast and accurate
simulations of linear continuous-time (analog) systems and
linear or nonlinear discrete-time (digital) systems and
algorithms. The former version was based on mouse click
build-in hidden functions, while the newest version is using
some dynamic and GUI (graphical user interface) capabilities
[4].

Like many graphical programming languages,
SchematicSolver is using graphical icons on several pallets for
drawing schematic of any system or algorithm. This
schematic description of the system is placed in a variable as a
specification list with detailed description of any constitutive
element or descriptive entity enabling further symbolic
analysis. One possible representation of a system is a block
diagram that visualized main functionality of the system or
algorithm. Another possibility is to derive some properties of
the system or algorithm so that any output can be represented
as a function of all inputs, which is especially important for
MIMO (multiple-input multiple-output) system. Combining
descriptive properties of each element, the list can be used for
deriving transformed variables and thus providing the solution
of the system in the transformed domain (the continuous time
domain, the discrete time domain, the complex variable z for
digital systems, and the complex variable s for analog

Integration of Software SchematicSolver into
Mathematica® Environment

Miroslav Lutovac, Senior Member, IEEE, Vladimir Mladenović and
Maja Lutovac Banduka, Member, IEEE

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. EKI1.3.1-4

systems). All naturally generated signals are real-valued and
are referred to as real signals. But, in some applications, it is
desirable to generate signals that are complex-valued, also
called complex signals that are more appropriate for
mathematical analysis.

Regardless of the initial system description, the transformed
system can be easily generated by transforming the
description in the specification list. Even more, any of the
constative elements can be replaced with one or more
connected elements and thus simplified analysis of very
complex systems.

The newest version of SchematicSolver has many new
elements, such as resistors, capacitors, inductors, current and
voltage sources, or operating amplifiers and semiconductor
devices.

III. APPLICATIONMAKER

It is likely that developed code for ourselves can end up
being forgotten somewhere in hard disk, cloud server, or CD.
After some time it is almost impossible to remember the basic
idea of the purpose of the code and what is the meaning of the
variables. Even more it is more difficult to expect that
someone else can use the code without complete description
of the purpose and the usage of the developed application.

With completing the usage documentation at the moment of
the former implementation, the later usage can be simple for
any user. For this reason, integrating documentation for
specialized functions with Mathematica documentation center
implies creating documentation for a function (as template),
creating guides and tutorials, linking the notebooks to the
documentation center, creating "usage" and error messages
that display correctly in different environments.

ApplicationMaker is such an application that was
successfully used for simple application as Vickrey Auction
Game in Mathematica [2].

IV. DEVELOPMENT OF APPLICATION

In this section we are presenting the complete procedure for
the development of the application SchematicSolver.

The initial parts consist of discovering where the default
folders are and reading the required knowledge:

directory = NotebookDirectory[];
SetDirectory[directory]
folderUserM = $UserBaseDirectory;
folderMathApp=FileNameJoin[{folderUserM,
 "Applications"}];
newApplication = "SchematicSolver";
folderMNewApplicationTest =

 FileNameJoin[{folderMathApp, newApplication}];
FileNames[folderMNewApplicationTest]
<< ApplicationMaker`

The first two lines read the folder name where the directory
with the current evaluation notebook is (for example
generisanjeSS2DC.nb) and sets the current working
directory to directory.

The next line finds the base directory in which user-specific
files have to be conventionally loaded by the Wolfram

System. To name of this directory is added subdirectory
named Applications. All application packages will be in
that directory. As example, we have names of two folders
($HomeDirectory and $UserBaseDirectory)

C:\Users\MIROSLAV
C:\Users\MIROSLAV\AppData\Roaming\Mathematica

Now is a right moment to import knowledge for creating
documentation, available from (<< ApplicationMaker`).

The next step is to define subdirectories of applications,
such as:

FileNames[{
 FileNameJoin[{folderMNewApplicationTest,"Kernel"}],
 FileNameJoin[{…,"Documentation"}],
 FileNameJoin[{…,"Documentation","English"}],
 …, "Documentation","English","ReferencePages"}],
 …, "Documentation","English","Tutorials"}],
 …, "Documentation","English","Guides"}],
… "Documentation","English","ReferencePages","Guides"}],
}];

The subdirectories should contain some specific files, as is
illustrated in Table 1. The SchematicSolver application
package has the tree structure presented in Fig. 1.

TABLE I

REQUIRED FILES IN SUBFOLDERS

Folder File
"Kernel" "Init.m"
"Stylesheets" "UserReference.nb"
"SchematicSolver" "PacletInfo.m"
"Symbols" "DrawElement.nb",…
"Guides" "SchematicSolver.nb",…
"Tutorials" "GettingStarted.nb",…

The PacletInfo.m is a descriptor file for Mathematica

application; it is used by the documentation system so that
Mathematica can locate documentation based on its settings.
The PacletInfo.m contains a set of rules that describe the
application and what it contains.

Fig. 1. Tree structure of SchematicSolver application.

The basic step is to identify symbols for the index file. It is

necessary to import another knowledge using
Needs["DocumentationSearch`"]. $Package gives a
list of the contexts corresponding to all packages which have

been loaded in the current Wolfram System session. Using
$Package we can get the list of the contexts corresponding
to loaded packages, such as DocumentationSearch`.

Using the presented code, we can create the folder for all
symbol pages (that describe how are working each function in
a new package) and the folder for index files:
C:\Users\MIROSLAV\AppData\Roaming\Mathematica\
Applications\SchematicSolver\Documentation\English\
ReferencePages\Symbols

C:\Users\MIROSLAV\AppData\Roaming\Mathematica\
Applications\SchematicSolver\Documentation\English\
Index

The opening and closing sessions are initialized for
documentation search and are preparing index files.

A. Guide, Tutorial, and Function notebooks

To create guide pages, we can use the function NewGuide.
NewGuide creates a guide template notebook, say
guideName.nb, inside the documentation for the application.
If we try to create a guide that has already been created we
will obtain an error message with a link to open the existing
guide:

NewGuide::guideerr: The guide you are trying to create in the application
SchematicSolver already exists. Click here to edit its contents. $Failed

Each guide notebook is a separate file that can be modified
independently from preparing documentation, but the final
version should be used for completing the whole procedure of
making the application.

The Mathematica help system works with a highly
structured set of documents. Each document can be a guide
notebook, reference notebook, and tutorial notebook. Each of
these pages has a structure and specific style defined in
UserReference.nb.

Fig. 2. Sample guide notebook.

A guide notebook focuses on a single topic, providing links

to functions that share functionality. Sections are provided to
link to other related documents. A sample guide page is
shown in Fig. 2.

Tutorial notebooks focus on the functionality and include
short descriptions of useful features, in a form of textbook-

like information. Sections are provided to link to other related
documents. A sample tutorial notebook is presented in Fig. 3.

All documents generated as guide, tutorial or function
description (presented in Fig. 4) are available in a same
manner as any built-in Mathematica function.

Fig. 3. Sample tutorial notebook.

Fig. 4. Sample reference notebook.

New template for guide file is generated using the function
NewGuide[.], while new template for tutorial notebook is a
result of the function NewTutorial[.]. All files that are
generated (guides, tutorials, and functions) are editable, but
after building the applications with BuildApplication[.],
all documentation files (guides, tutorials, and functions) are
non-editable.

Fig. 5. SchematicSolver palette.

Fig. 6. Search results for analytic signal.

At final stage, some textual description should be changed

in newest version of Mathematica in the file PacletInfo.݉.
The Context and MainPage should be changed according to
what additional knowledge we would like to add into the

current version of SchematicSolver.

B. Palette Notebook

Palettes can be used to perform many actions in the
Wolfram System front end, including drawing systems,
solving systems, and preparing reports. After saving palette
into appropriate folder we can use it as a keyboard, as it is
illustrated in Fig. 5 for Discrete-time systems. Palettes for the
design electric circuits were presented in [4].

C. Documentation center

The purpose of this paper is to demonstrate that a new
application developed to work within Mathematica is
integrated in the Documentation center of this Computer
Algebra System (CAS). When Mathematica is started, we can
search for some terms, for example analytic signal. Search
results are presented in Fig. 6. The searched term is in several
built-in Wolfram Language symbols, Wolfram language
tutorials, but also in SchematicSolver guides. This proves that
the application SchematicSolver is integrated into Wolfram
documentation center and all functions and usages are visible
in a same manner as built-in commands.

The whole procedure was tested on desktop computers, but
also on Raspberry Pi [5].

V. CONCLUSION

Application SchematicSolver is integrated into Computer
Algebra System (CAS) as third-party product. The proposed
methodology is based only on Wolfram language without
usage of specific development environment. This paper can
help everyone who is using Wolfram language to integrate his
work into Mathematica using basic functions, in such a way
that developed new functions are available as built-in
functions.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education and
Science of Serbia under Grant TR 32023.

REFERENCES

[1] S. Wolfram, An elementary introduction to the Wolfram Language,

Champaign, IL, USA: Wolfram Media, 2015.
[2] M. D. Lutovac and A. M. Lutovac, “Vickrey Auction Game as

Mathematica Application,” Proc. 22nd Telecommunications forum
TELFOR 2014, Belgrade, Serbia, pp. 1023-1026, Nov. 25-27, 2014.

[3] M. Lutovac, D. Tošic, SchematicSolver Version 2.3, 2014,
http://www.wolfram.com/products/applications/schematicsolver/.

[4] M. D. Lutovac, V. Mladenović, M. Lutovac-Banduka, “Graphical user
interface for electrical engineering systems using Wolfram Language,”
Telecommunications Forum (TELFOR), Belgrade, Serbia, November
2016, pp. 9.39.1–4.

[5] C. Severance, “Eben Upton: Raspberry Pi,” IEEE Computer, vol. 46,
no. 10, pp. 14–16, 2013.

