

Abstract—the paper discusses designing of the frame filtering

tables in distributed computing or telecommunication systems.

The proposed method of filtering tables design can reduce the

time of frame processing by network bridges and switches and

provide a low probability of filtering table overflowing. We have

studied the new method and determined optimal distributing of

memory amount for table allocating.

Also we discuss the energy efficient of devices in dependence

on filtering table design. Hash table is a common approach to

build associative arrays, database indexes and various kinds of

program-defined caches. Our approach allows to design ASIC to

perform function of fast search in associative arrays. It leads to

significant decreasing power consumption. Moreover, hashing

techniques are suffered from large probability of collision in the

case of hash size acceptable for mobile devices. This makes it

necessary to perform additional energy-inefficient memory

access operations to resolve these collisions. We propose hashing

technique with lower probability of collision for the hash of the

same size. We show that unlike existing collision free approaches

our hashing method has a much broader area of applicability. To

support these claims both theoretical and experimental studies

are presented. Experimental comparison with existing

approaches has shown significant improvement of energy-

efficiency for common applications.

Index Terms—hash table; hash collision; energy efficiency;

lookup table; associated table; frame forwarding; packet

switching; packet routing; IoT.

I. INTRODUCTION

Amount of mobile devices and IoT devices recent time is

dramatic increasing. It is leading to load increasing on the

network switches and routers. Mobile devices and IoT devices

are using radio for data transfer. The primary function of

switches and routers is isolating of local traffic. Absence of

this isolation will lead to decreasing of bandwidth of data

channel due to sharing the channel between devices and

collisions of packets. That’s why the problem of efficient

switching and local traffic isolation is still relevant.

Another modern trend is using the mobile devices as

network switches and routers. It can be 4G – WiFi routers on

smartphones or switch for mesh-network of IoT with

autonomic power supply. Such devices should work fully

autonomously in autonomous mode using portative power

supplies only. It makes their energy efficiency an extremely

important problem [1].

There are few ways to improve energy efficiency. One of

Sergey Makov is with the Radio and electro-technical Department, Don

State Technical University of Rostov-on-Don, Shakhty, Rostov reg., Russia,

(e-mail: makovs@rambler.ru).

them is to improve microelectronics technology. Decreased

electrical capacity of the gate leads to reduction of power

consumption per each gate in digital circuit. It can be achieved

by reduction of gate size. [2] Another way is dynamical

control of voltage supply and clock frequency of digital

circuits according to performed tasks. This approach suggests

compliance of operating systems and applications for mobile

devices to given requirements [3]. The main mechanism is to

switch the mobile device in “sleep mode” that have to be

supported by operating system. [4] All these ways are

universal and independent on algorithms used within

applications and operating system functions.

In order to ensure high energy-efficiency, algorithms

targeted to mobile and IoT devices should be developed with

minimal memory and computational requirements. This is

general requirement for all algorithms. Other requirement is

speed. In many cases these requirements cannot be achieved

simultaneously.

One of the common types of algorithms is ones based on

lookup-tables. Some applications require determining if some

data point belong to one or another group based on some

criteria. For instance, it can be classification of pictures

according presence of particular person or smiling faces in it.

Another important example is separation of descriptors

according to some features.

In some applications there is a need to have ability to

modify behavior and update its lookup-tables when objects

transit from one class to other or when information about

object’s class becomes irrelevant. Important example is the

routing table in mesh network of mobile devices. When some

device appears or disappears in the network area or move

from one location to another. Another example is switching

tables in network switches.

These tasks are usually being solved by self-learning

lookup-tables. That’s why development of methods for

lookup-table design and efficient algorithms to update or

search information within the table is an actual goal.

Some of application dependent of lookup-tables are

supposed to work in real-time. In such situations the time to

update data or to perform a search within it is limited. Quite

often this time may be about few microseconds. This is the

case for packet switching or routing with use of self-learned

lookup-tables. All operations in this type of tables should be

performed in time interval between two packets as shown on

figure 1 for Ethernet. In case of on-the-fly processing or cut-

through switching the time to search data in the table for

correct switching or routing could be limited by nanoseconds.

Method of Filtering Tables Design for Ultra-fast

Switching for Systems with Limited Resources

Sergey Makov

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. EKI1.1.1-8

Fig. 1. Time to processing algorithm

For 10GBit/s systems this time is equals to 56ns. It is hard

to make a decision during this time using low cost

microcontrollers or processors. Due to that fact the ASICs are

using additional hardware for computing. [5]

In the case of cut-through switching the search time should

be as short as possible to minimize frame buffer size and

latency. Decision time interval can be about few nanoseconds

even for 1GBit/s systems.

The most efficient way of lookup-tables design is hashing

tables [6]. However, this approach has a disadvantage – there

is possibility for several different search keys to have equal

hash. This situation is called “collision”. There are many was

to resolve collisions in hashing tables. All of them take

additional time and computational resources. Not resolved

collision is the cause of wrong search result. In case of

classification task it means false negative or false positive

results.

In this paper we discuss methods of hashing lookup-table

design for applications in which is able to have non-zero

probability of false positive or false negative results of search.

We show that convenient hashing tables design methods have

lacks and propose method to improve hashing table

efficiency. Also we propose the method to find the “ideal”

hashing strategy for applications in which searching results

should be exact.

II. HASHING EFFICIENCY ASSESSMENT

The method of blocks is convenient method for hashing

tables collision resolving. According to this method for each

hash value several cells is allocated to store search key. In the

case of collision the search continues in next cell until the

match is found or an empty cell is reached. We have shown

that this method does not eliminate the probability of

collision, but rather provides a reduction to an acceptable

value. To assess the efficiency of table design method we

compare amount of memory to store the lookup-table and the

probability of non-resolved collision.

The collision probability is the ratio of number of all

possible combinations of searching keys that give us collision

Q and the number of all possible combinations of searching

keys W:

W

Q
P = (1)

To find the collision probability let’s make following

definitions:

lr ⋅ – is the number of all possible searching keys;

r – the number of possible hash values;

m – the number of existing at the moment searching keys;

k – the number of cells in the table for one hash value

lk ≤ .

Below we use the following denotes:

X – the number of elements of a finite set X;

[]t – the integer part of real number t ;

 ()!!

!

mnm

n
Cm
n −

= – the number of m-combinations of a set

of n elements, for 0≥≥ nm .

We can think of hashing process as the process of dividing

of the set of all search keys A to subsets rAAA ,...,, 21 with l

elements in each. The hash value for each search key in one

subset is the same value)(...)()(21 lxhxhxh === for

iAx∈ . i

r

i
AA

1=
= U .

The set B is a subset of A and it consists of all existing

searching keys. Let’s call the set B “ { } kmA r
ii ,,1= –allowable”

when for each ri ,...,2,1= the set iA is contains no more than

k elements from set B. The number of all allowable sets we

denote as mk
rl

λ . To determinate collision probability we

should find
mk
rl

WQ λ−= and use equation (1). Here

)!(!!

)!(

nmrlnm

rl
W

−−
= . (2)

Let’s derive an expression to count all allowable sets

{ }rikABmBAB i
mk
rl

,...,2,1;;: =≤=⊂= Iλ . It is clear that

mk
rl

λ is positive if and only if

rkm ≤ (3)

Suppose that inequality (3) is satisfied. In this case if

0=k then 0=m and the only one allowable set is ∅=B . It

means 0,1
00 ≥∀= lr
rl

λ .

Let’s consider the case when 1≥k . For every allowable set

B we will take { }kABriT iB =≤≤= I:1 ,

{ } BB TrT \,...,2,1= . Let’s find the range of values BTs = .

Any allowable set B satisfy to conditions:

mAB i
Ti B

≤










∈
UI , () Bi

Ti
TkAB

B

1−≤










∈
UI .

These conditions may be rewritten as system of inequality:

()() ()
k

m
skrm

srkksm

mks
≤≤−−⇔





−−≤−

≤
1

1

or

()() 




≤≤−−
k

m
skrm 1;0max (4)

Opposite is also true. For each integer s from band (4) may

be found allowable set B satisfied the condition: sTB = . To

construct such a set we need to perform next procedures:

take a s-elements subset BT of set { }r,...,2,1 ;

if BT is not empty, for each BTi∈ take k-elements set iB

from iA ;

take “ { } 1,, −−∈ kksmA
BTii - allowable” set D from

lsr)(− -elements set i
Ti

AA

B∈
=′ U ;

suppose DBB i
Ti B

UU 









=

∈
.

The first procedure can be accomplished in s
rC ways. The

second one in ()sk
l

C ways. Third –
1,

,
−−

−
kksm

lsr
λ ways.

According to the principle of multiplication we have the

number of “ { } kmA r
ii ,,1= - allowable” sets:

()∑=







−−=

−−
−

k

m

krms

kksm
lsr

sk
l

s
r

mk
rl

CC
))1(;0max(

1,
,

λλ (5)

From (3) and (4) it is clear that all values denoted as
jp
il

λ

are positive so we can use (5) for finding
jp
il

λ with

appropriate values of pji ,, . Thus we have a recurrent

expression to count all allowable sets.

Let’s derive expressions for collision probability for

lookup-tables designed by convenient method.

Using (1), (2) and (5) we will have:

For k=1

()
∏

+−
+−

−=
=

m

v vmrl

lvmr
P

1

1 .

For k=2 we have:

.
2

1
))((

)2(
)(

1

11

2

);0max(

2

11





∏

−
⋅∏ +−−×

∑ 



×∏ +−⋅∏

+−
−=

=

−

=








−= ==

s

u

sm

t

m

rms

s

w

m

v

lu

l
tsmr

wsm
vmrl

l
P

For k=4:

∑ ∑ ∑




×∏
−−

−=







=






 −

=






 −−

= =

4

0

3

4

0

2

34

0 1

1

m

s

sm

p

psm

q

m

mrl

l
P

ν ν

()∏ ×+−−−×
++ qps

w

wqpsm
234

234

() ()()()
×∏

−−−
∏ +−−−−×

=

−−−

=

s

u

qpsm

t ul

lll
tqpsmr

1
3

23

1 24

321
)23(

()() ()






∏
−

⋅∏
−−

×
==

q

j

p

y lj

l

yl

ll

11
2 2

1

6

21
.

As you can see, the expression becomes more difficult with

the growth of the number of cells in a block.

For example for the Ethernet MAC-addresses lr ⋅ is equal

to
482 . For 10-bit hash r = 1024. Fig. 2 shows dependence of

the collision probability from the number of nodes in net m of

blocks k=1, k=2 and k=4. For this example the required

amount of memory for lookup-table is 256Kbits.

In the system proposed by the McNeil patent [7] with a

memory amount of 8 Mbit, a 15-bit hash was used. We have

calculated the probability of collisions for the system. It was

approximately
710−

 for 1000 network’s nodes.

Fig. 2. Collision probability for convenient method

Thus even for method of blocks the collision probability do

not reach zero. We can provide acceptable level of collision

probability only by use of different methods to reduce this

probability, such as parallel hashing or adaptive hashing.

III. PROPOSED METHOD OF TABLE DESIGN

Any classification database can be represented as set of

labels which associate objects to particular class. For example,

in case of use of hashing table as filtering table within

network switch, we can split filtering table to several ones

according to the number of switch ports as shown at figure 3.

Fig. 3. Switch with splitted filtering table

We propose to exclude the storage of the searching keys in

the table. According to proposed method, only the information

on the object’s class should be stored in the table. We propose

to store two flags in lookup-table. One of the flags has non-

zero value when an object belongs to a given class. In other

words, searching key is belonging to the set of existing keys.

The other flag is non-zero if object is not of this class. Thus

the amount of required memory to store the table will

decrease. But we will not be able to use a mechanism of

collision resolving.

The collision in this case of lookup-table design takes the

place only if both flags have non-zero value for the same

hash.

So we should estimate the collision probability for

proposed method. To solve this problem we use previous

definitions with some additions:

m – the number of existing at the moment searching keys

belonged to the class;

n – the number of existing at the moment searching keys

not belonged to the class.

Let’s suppose set B contains searching keys belonged to the

class and set C is consisted of searching keys not belonged to

the class. The elements of set B are randomly selected from

set A (all existing searching keys). And the elements of set C

are selected from the set BA \ . All selected elements have

same probability to be chosen.

We can construct sets of hash values for sets C and B. It is:

{ } { }∅≠≤≤=∅≠≤≤= ii ACriMABriL II :1,:1

ML == µλ ,

The condition of collision to come up is following:

∅≠ML I (6)

Let’s find the probability that intersection of L and M is

empty. Let’s call “good” any pair of sets B and C if they

provide that event. Then probability of collision is a

probability of opposite event.

To solve this problem let’s solve an auxiliary problem.

Let’s denote as ()lmtr ; or shorter as rt the number of m-

elements subsets B of set A such that for each i=1, 2, …, r

∅≠iABI .

Suppose k as minimal integer number greater or equal to

l

m
:

k
l

m
k ≤<−1 . (7)

Then 11 +≤+< m
l

m
k or mk ≤ . Let’s show that 0=rt

if kr < or mr > . And for mrk ≤≤

() ()∑ −−=
=

−
+−

r

ki

ki
r

m
lkir

ik
r CCt

)(
11 . (8)

By definition rlA = . Then with r<k and use (7)

ml
l

m
lkA =<−≤)1(. It means 0=rt .

If mr > , any AB ⊂ intersecting with every iA , ri ≤≤1

consists not less than r elements and not more m elements.

That means 0=rt .

Let’s prove (8) for mrk ≤≤ .

If r=k then
m
kl

k

ki

ki
k

m
lkik

ik
k CCCt =∑ −−=

=

−
+−)(

)1()1(. This is

equal to the number of all possible m-elements subsets of set

A (from (7) follows mkl ≥). Because of lmkl <− (from (7))

all the subsets intersecting with each iA , ki ≤≤1 . Thus we

prove (8) for r=k.

Let’s suppose that (8) is true for any integer jrk ≤≤ .

Here j – is integer number form range mjk <≤ . Let’s prove

(8) for the case of 1+= jr . From ljrl)1(+= -elements set

A we can construct m
lj

C
)1(+ m-elements subsets. For every

natural number p let’s suppose

{ }{ }pABjsmBABq sp =∅≠+≤≤=⊂= I:11,: .

It is clear that 0=pq for 1+> jp . Besides, because of

0=pt with kp < (as was proved before) 0=pq with same

p.

Thus

∑=
+

=
+

1

)1(

j

kp
p

m
lj

qC (9)

Every summand in equation (9) may be denoted as

{ }
∑=

=
+⊂

pT
jT

p Tqq
1,...,2,1

)((10)

Here { }TiABmBABTq i ∈⇔∅≠=⊂= I,:)(.

The sum (10) consists of
p
jC 1+ summands. Every one of

them equals pt . Thus 1,...,,
1

+== + jkpCq
p
jp . With (9)

and with equation 11 ++ = jj tq we have:

∑−=∑−=
=

++
=

++
j

kp
p

p
j

m
lj

j

kp
p

m
ljj tCCqCt

1)1()1(1 .

Using the mathematical induction let’s replace r to p within

(8):

∑ ∑ −−−=
= =

−
+−+++

j

kp

p

ki

ki
p

m
lkip

ikp
j

m
ljj CCCCt

)(1)1(1)1()1((11)

Let’s replace sum indexes p and i within (11) to

ipj +−+= 1α and pj −+= 1β . Then we

have β−+= 1jp , βα −=i . Let’s solve next system of

inequalities:





≤≤

≤≤

pik

jpk

⇔




+≤≤+

−+≤≤

1

11

jk

kj

αβ
β





−≤≤

+≤≤+

k

jk

αβ
α

1

11
.

Then (11) can be rewritten as:

∑ ×−−+=
+

+=
+−+++

1

1
)1()1(1)1()1(

j

k

m
lkj

km
ljj CCt

α

α
α

∑ −×
−

=

−−
−+

−+
+

−k
k

j
j
j CC

α

β

βα
β

ββ

1
1

1
1

1)1(.

The last sum of this expression can be simplified:

=∑
+−+−−−+

−++
−

−

=

+k

kjkj

jjα

β

β
αβαββ

β

1

1

)!1()!(!)!1(

)!1()!1(
)1(

=∑
−−+−+−

−+
−−=

−

=

k

kkjk

kjα

β

β
βαβαα

α

1)!(!)!1()!(

)!()!1(
)1(

=∑ −−=
−

=
−

−
+

k

k
k

j CC
α

β

β
α

αβ

1
1)1(

()=+−−=











∑ ⋅−−= −−

+

−

=

−−
−

−
+

kk
j

k
k

k
k

j
CCC ααα

β

βαββ
α

α)11(11)1(1
1

0
1

k
jC −
+= α

1

Thus

=∑ −−+=
+

+=

−
++−+++

1

1
1)1()1(1)1()1(

j

k

k
j

m
lkj

km
ljj CCCt

α

α
α

α

∑ −−=
+

=

−
++−+

1

1)1(
)1()1(

j

k

k
j

m
lkj

k
CC

α

α
α

α
, we have expression

(8) with 1+= jr . Thus expression (8) is true for mrk ≤≤ .

The ranges of possible values of λ and µ are following:

);min(mrk ≤≤ λ ,);min(nrs λµ −≤≤ . (12)

Here, s is the least integer that greater or equal of
l

n
. So the

nsmk ≤≤ , , then (12) have solution if and only if





−≤

≤

krs

rk
, which means

rsk ≤+ (13)

To provide a positive value of collision probability it is

necessary and sufficient to satisfy condition (13). Then for

each solution ()µλ, of (12) exists
)!(!!

!

µλµλ −−r
r

 a pair of

sets { }rML ,...,2,1, ⊂ such that ∅=ML I , ML == µλ , .

Each the pair is belonging () ()lntlmt ;; µλ ⋅ of “good” pair of

sets B and C.

So the whole number of such pairs is equal

()∑ ∑
−−

=
=

−);min();min(
);();(

!!!

!mr

k

nr
lntlmt

r

r
Q

λ

λ

µ
µλµλµλ

Using expression (8) we have

() ×−∑ ∑ ⋅
−−

= +

=

−

=

sk
mr

k

nr

s r

r
Q)1(

!!!

!);min();min(

λ

λ

µ µλµλ

∑ −∑ −×
=

−
+−

=

−
+−

µ
µµ

λ
λλ

sj

sjn
lsj

j

ki

kim
lki

i
CCCC

)()(
)1()1((14)

Thus we have an expression to find probability of collision

for proposed method:

W

Q
P −= 1 ,

()
∑ ∑ ×

∏ ++−

∏ ++−

−=
= = +

=

+

=m n

nm
nmrl

r

P
1 1

1

1

))((

)(

1
λ µ

α

µλ

ρ

α

ρµλ

()

() ()

()

() ()∑
+−−

∏ +−+−

∑
+−−

∏ +−+−

−×
=

=

=

=+λ γµ β

µ

γµ

λ

βλ

1

1

1

1

!1!1

)1(

!1!1

)1(

)1(
i

n

j

m

ji

jj

nlj

ii

mli

.

Figure 4 shows the results of calculating collision

probability for proposed method. The bold lines show values

of the probability in dependence on n and m. The diagonal

axis s is the sum of n and m. Here we can see that for equal s

the worst case in since of collision probability is when n=m.

To compare the probability of collision for convenient and

proposed methods we calculate collision probability of

lookup-table without keys storing with the same size as in the

previous example (256Kbits). The figure 4 shows results of

comparison.

Fig 4. Collision probability for proposed method

On the figure 5 S is a summary number of keys. Line 1, 2

and 3 show dependence of collision probability for convenient

method of hashing tables design like in previous example.

Line 3, 4 and 5 is for proposed method. Line 4 for the case

when n=m. Line 5 for the case when n=8, and line 6 for n=2.

Figure 5. Collision probability comparison

Using of parallel hashing can give dramatic improvement

of method efficiency as shown in [8]. The block diagram of

frame testing block is shown at figure 6. In the case of using

parallel hashing collision came up when we get collision in all

of parallel tables.

Fig. 6. Structure of Frame testing block

The condition of collision is following:

∅≠
=
I I
t

j
jj ML

1

 (15)

According (15) we calculated collision probability and

compared it with previous example.

The results are shown on figure 7 were got with the

following conditions: 12-bit hash, 8 parallel tables, 4-bit

record length in each table, no searching key storing (line 4).

Summary required memory size is 128KBit. Line 1 for

convenient method (10-bit hash, 64-bit record length, total

256 Kbit). Line 2 – 2 parallel tables, no searching key storing,

total 32Kbit. Line 3 – 4 parallel tables, no searching key

storing, 64Kbit total.

Fig. 7. Parallel hashing collision probability comparison

From figure 7 it is clear that even for 4 parallel tables the

collision probability is much lower than for the block method.

In addition, the total memory size to allocate the tables for

proposed method was per 4 times lower than the reference

method.

With the increasing number of parallel hashed tables up to

8, the tables size was 128 Kbit, and the collision probability

was lowered to minimal, as for the reference method, the

memory size of the table was 8 Mbit meaning a reduction of

64 times in memory usage.

During the studying of relation collision probability of

lookup-table table designed by proposed method we found an

optimal number of parallel tables for a fixed total memory

size. figure 8 shows the dependence of collision probability

according to the number of parallel tables. The number of

existing keys was S = 1000 and for total memory size of 32

Kbit (line 1), for 64 Kbit (line 2) and for 128 Kbit (line 3). In

this figure values near the axis t, is not actually zeros. These

are about 710− and less.

Fig. 8. Optimum of probability

These results suggest an optimal number of parallel tables

for every fixed total memory size to allocate parallel hash

lookup-tables.

IV. “IDEAL” HASHING

The ideal hashing or perfect hash function allows to avoid

collision at all.

We can try to find the perfect hash function by changing

the hash calculating way if we detect the collision state. But

this approach has a lack. We need to rebuild or refill the table

after hash function changing. It may take much time depends

on size of table.

To eliminate the lack we propose to combine parallel

hashing with a mechanism of perfect hash selection.

One of the parallel hash tables should be to change its hash

function. If collision detected, we change way of the hash

computing – choose another hash function for this table. The

bank of hash functions for choosing for adaptive hashing

should not contain the hash functions used in other of parallel

hash tables.

Usage of the adaptive hashing gives us geometric

distribution of collision probability in depends on number of

hash functions in bank of adaptive hash functions v. Collision

probability decreasing according following expression

v
tadapt PP =. (16)

here tP is collision probability for t parallel hash tables

before changing the adaptive hash.

Thus, if initial collision probability for proposed method

was 210− , in case of collision detection, the first iteration of

hash function changing will give us 410− , next iteration -

610− e.c.t.

As we can see, the required amount of memory is similar to

the proposed method of parallel hashing without searching

keys storing, but thanks for adaptive mechanism we can

decrease collision probability to required value. Besides we

insignificantly los the hash table in the process of changing

the adaptive hash function. This is because of we have several

other parallel tables that keep working during adaptive table is

rebuilt.

V. HASH CALCULATION TECHNIQUES

There are many algorithms and techniques of hash

calculation. Recent time are using many complex approaches

such as CVM, neural networks, etc. [9, 10]. Such complex

methods give very good results in classification problems but

need huge time for learning.

For the ASIC realization we need simple and very fast

technique. The main demands is minimizing of memory usage

and time for hash calculating. The simplest way of hash

calculation is modulo operation. In this case hash is the

reminder of Euclidian division of the transmitted data and

some constant. One of realization of this approach is

polynomial division or CRC calculating.

The possible number of CRC calculating ways for fixed

hash width is limited by this width as width2 . Not all of them

are “good” in context of Hemming distance [11, 12, 13].

In this work we used 16 variation of polynomial for from

10 to 16 bits CRC.

Searching of the domain related set of polynomials for

CRC calculation is an our further aim.

VI. REALIZATION WITHIN FPGA

For comparison existing device and proposed method we

designed a realization for implementing in FPGA (Cyclone II

series). We designed three-port switch that is functional

analog of ADM6993 by Infinion [14].

For comparison existing device and proposed method we

designed a realization for implementing in FPGA (Cyclone II

series). We designed three-port switch that is functional

analog of ADM6993 by Infinion [14]. Figure 8 and 9 shows

block diagram of switch port and frame testing block with

using four parallel tables.

Designed device has three ports. One of them was transfer

speed limited on the level of 1024 Kbit/s. We loaded switch

by short packets and compared power consumption for both

devices. Results of experiment are in the Table I.

Both devices – prototype and analog was supplied by DC

current 3.3 V. We measured current on the power supply in

three modes: for 10% load of limited port, 50% and 100%

load.

During whole experiments we controlled loss of packets.

We obtained that designed device has at least 2,2 times lover

power dissipation then prototype.

TABLE I

POWER CONSUMPTION COMPARISON

Chanal

load, %

Power consumption, mW
Ratio

Prototype Designed divice

10 1172 450 2,6

50 1216 521 2,3

90 1228 565 2,2

Fig. 8. Switch port block diagram

Fig. 9. Frame testing block diagram

VII. CONCLUSIONS

The proposed in the paper approaches to design hash

lookup-tables allows dramatic decrease the amount of

required memory without losing efficiency of lookup-table

performance. Besides, these approaches are ready to be

realized as IP-cores or ASIC microchips that can work with

much more lower clock frequency and supply voltage. It can

reduce the load to the CPU and main memory of mobile

device.

Proposed method allowed to reduce the power consumption

of network switch at least 2 times in comparison with

convenient method. This result was confirmed in stand tests.

VIII. ACKNOWLEDGEMENT

The reported study was supported by the Russian

Foundation for Basic research (RFBR), research projects

№17-57-53192 and №16-37-00386.

REFERENCES

[1] Huang, Junxian, et al. "A close examination of performance and power
characteristics of 4G LTE networks." Proceedings of the 10th

international conference on Mobile systems, applications, and services.

ACM, 2012.
[2] Chandrakasan, Anantha P., and Robert W. Brodersen. Low power

digital CMOS design. Springer Science & Business Media, 2012.

[3] Alam, Faisal, et al. "Energy optimization in Android applications
through wakelock placement." Design, Automation and Test in Europe

Conference and Exhibition (DATE), 2014. IEEE, 2014.

[4] Ma, Yi-Wei, et al. "A Power Saving Mechanism for Multimedia
Streaming Services in Cloud Computing." Systems Journal, IEEE 8.1

(2014): 219-224.

[5] Congdon, Paul T., et al. "Simultaneously reducing latency and power
consumption in openflow switches." IEEE/ACM Transactions on

Networking (TON) 22.3 (2014): 1007-1020.

[6] Knuth, D. "The Art of Computer Programming 1: Fundamental
Algorithms 2: Seminumerical Algorithms 3: Sorting and Searching."

(1968)

[7] McNeil Jr, Roy, Yilun Wang, and Sheng Wu. "Using CRC-15 as hash

function for MAC bridge filter design." U.S. Patent No. 7,620,043. 17

Nov. 2009.
[8] Makov, Sergey V., et al. "A method for ultra fast searching within

traffic filtering tables in networking hardware." IS&T/SPIE Electronic

Imaging. International Society for Optics and Photonics, 2015.
[9] Wang, Jun, et al. "Learning to hash for indexing big data—a survey."

Proceedings of the IEEE 104.1 (2016): 34-57.

[10] Frantc, V. A., et al. "Simultenious binary hash and features learning for
image retrieval." SPIE Commercial+ Scientific Sensing and Imaging.

International Society for Optics and Photonics, 2016.

[11] Koopman, Philip, and Tridib Chakravarty. "Cyclic redundancy code
(CRC) polynomial selection for embedded networks." Dependable

Systems and Networks, 2004 International Conference on. IEEE, 2004.

[12] Castagnoli, Guy, Stefan Brauer, and Martin Herrmann. "Optimization of
cyclic redundancy-check codes with 24 and 32 parity bits." IEEE

Transactions on Communications 41.6 (1993): 883-892.

[13] Koopman, Philip. "32-bit cyclic redundancy codes for internet
applications." Dependable Systems and Networks, 2002. DSN 2002.

Proceedings. International Conference on. IEEE, 2002.

[14] ADM6993/X HDLC to Fast Ethernet converter: data sheet Rev1.11,
Nov. 2005 URL: http:// img.chipfind.ru/ pdf/ infineon/

adm6993_x_ds_green_version_1.pdf

