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Abstract— We developed a method based on an artificial neural 

network for the estimation of gait parameters from data recorded 

by inertial measurement units (IMU) mounted on the shank and 

foot. The input for the training of the neural network are the 

signals recorded by inertial measurement units (Yost Labs, 

Portsmouth, Ohio, USA) positioned at the foot and the shank, and 

the output of the network are the fuzzified data from the sensors 

recorded by the force transducers built into the insoles. The 

communication between the sensors and the computer was realized 

wirelessly. The input and output data were captured synchronously 

on a Windows platform during the gait. The differences between 

the gait parameters (relative errors) estimated from the reference 

data and the IMU system were below 4%. The system is now being 

used in a small clinical trial in stroke patients. 

 

Index Terms— gait cycle, gyroscope, ground reaction force, 

neural network 

I. INTRODUCTION 

The assessment of the gait in the rehabilitation uses semi-

subjective heuristic description based on the expertise and 

experience of a clinician. Current instrumentation (camera 

based systems recording the markers mounted on the body 

and force platforms measuring the ground reaction force [1-2], 

instrumented walkways [3-5], wearable systems composed of 

inertial measurement units and instrumented insoles [6-8], and 

instrumentation for measuring electromyography) allows the 

quantification of gait [9-10]. The quantification is based on 

the data characterizing mechanics (joint angles [11], ground 

reaction forces [12], joint forces and torques [13], angular 

velocities and accelerations [14-15], power, energy) or 

physiological activity that is responsible for the gait 

(electromyography – EMG) [16-18]. The quantification can 

also combine the mechanical and physiological measures. For 

clinical applications, the complex data can be reduced to a set 

of scalar measures describing the most relevant parameters 

(events defining the gait). This study is directly related to the 

estimation of the following gait parameters: 

 stride cycle – time between the two consecutive heel 

contact (HC)  of the same leg; 

 step cycle – time between the HC of the ipsilateral leg and 
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the HC of the contralateral leg; 

 stance phase – time between the HC and the toes off (TO) 

of one leg; 

 swing phase – time between TO and HC of one leg; 

 single support phase (SSP) – time when only one leg is 

contacting the ground; 

 double support phase (DSP) – time when both legs are 

contacting the ground; 

 gait cadence – number of steps per unit time. 

 
Fig. 1: Gait phases defining the parameters of interest. 

 

The simplest method for determining the listed gait 

parameters are walkways and instrumented insoles. The 

walkway limits the gait to a fixed geometry [3-5], and the 

insoles are not robust sufficiently for the prolonged free gait. 

The limitations were the motivation for testing and validating 

the use of a simple wearable system with only two inertial 

measurement units (IMU) for the estimation of gait 

parameters in the clinical environment. We compared the 

results obtained by IMUs with results obtained by 

instrumented insoles, as a referent system. To accomplish the 

task we developed a computer simulation based on an 

artificial neural network which uses data from inertial 

measurement units as inputs and fuzzified ground reaction 

force signals from instrumented insoles as the output 

(reference data).  

We present the method and the comparison of the gait 

parameters determined by both systems.  

II. METHODS 

A. Instrumentation 

 We used the custom designed system Walky (Fig. 2) for 

the measurements. The system comprises two insoles (five 

sensors in each insole) and four IMUs (Yost Labs, 

Portsmouth, Ohio, USA https://yostlabs.com) measuring 
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angular rates (3-axis gyroscope) and accelerations (3-axis 

accelerometer). The size of insoles can be set to fit the foot 

size. Walky system sends wirelessly signals as 100 Hz 

sampling rate to the host PC. 

 

 
Fig. 2.  Walky system: two insoles with five force transducers each (1), 

extensions for insoles (2), wireless emitters (3) for sensors in insoles which 

communicate with a computer by a dongle (4), four IMUs (5) which 

communicate wirelessly with a dongle (6). 

 

B.    Subjects and Procedure  

We recorded data from five healthy subjects (three male 

and two female, 26±4 years old).We attached two IMUs per 

leg: one unit was placed on the top side of the foot and the 

second on the proximal side of the shank below the knee (Fig. 

3). Before the placing insoles, we set offset of force sensors to 

zero. We also set the size of insoles to match the size of 

subject’s foot. After attaching all sensors to the appropriate 

positions, the subject was asked to walk in straight line for 

about ten standard steps. The gait always started from the 

standing with both feet on the ground. 

 
Figure 3. The sketch of the positions of IMU sensors.  

 

C.    Signal processing 

Signals were processed offline in Matlab R2015a (The 

MathWorks, Natick, MA, USA). We applied Butterworth 

low-pass filter (5th order, the cutoff frequency of 3Hz) on 

angular velocity signals to reduce noise and the impact 

artifacts during the heel contact. All signals were normalized 

by dividing all signals recorded by one recording unit with 

maximal absolute value recorded with that IMU. This 

normalization set the range for the force signals to [0, 1] and 

the angular velocity signals to [-1, 1].  

We used fuzzy logic to estimate the phases of gait cycle 

from the foot pressure signals. Inputs for the fuzzy logic were 

three signals: heel force, metatarsal force and toes force. We 

set two spline-based membership functions for each input:  

 
 

 
 

where x is the time sample of the signal, and a, b, c and d the 

parameters of curves given in Table 1.  

 
TABLE 1. PARAMETERS OF MEMBERSHIP FUNCTIONS  

 

 a b c d 

heel 0 0.1 0.005 0.025 

metatarsal 0 0.1 0.005 0.025 

toes 0 0.02 0 0.02 

 

  We used additional rules for the fuzzification shown in 

Fig. 4. The output of the fuzzy logic has four values for four 

phases: swing, heel contact, flatfoot, and heel off (Fig. 4). 

 

 
Fig. 4. Illustration of the fuzzification for the estimation of the gait phases 

from foot pressure sensors. It has three inputs, each with two slope-based 
membership functions (left panel), additional rules (top right panel) and one 

output with four values for four phases: swing, heel, flatfoot and heel-off 

(bottom left panel). 
 

To estimate the gait phases from IMU signals, we used an 

artificial neural network (ANN). To minimize the error of 

phase recognition, we used cascade method based on two 

neural networks (Fig. 5). First ANN divides the signal into 

swing and stance phase. Second ANN recognizes flat foot 

phase in stance phase. Heel-on phase is obtained as the time 

between the beginning of the stance phase and the beginning 

of the flat foot phase. Similarly, the heel-off phase is obtained 

as a time between the end of the flat foot phase and the end of 

the stance phase. We divided swing phase into acceleration 



 

phase and deceleration phase by finding a local maximum in 

part of the intensity of the angular velocity signal during the 

swing phase. The intensity of the angular velocity is obtained 

as the root of the sum of squared component signals. 

 
Fig. 5. Algorithm for detection of gait phases based on two cascaded neural 

networks: FFNN1 separates the swing and stance phases, and FFNN2 detects 
subphases of the stance phase: heel-on, flat foot, and heel-off. Swing phase is 

divided into acceleration and deceleration phases by the estimation of the 
maximum value of the angular velocity in the swing phase. 

 

The ANN used are feedforward neural networks with ten 

inputs and ten outputs with linear transfer functions, and three 

hidden layers with sigmoidal transfer functions. The first 

ANN has 25 neurons in the first layer, 12 in the second and 7 

in the third layer (Fig. 6, top panel). The second ANN has 25 

neurons in the first layer, 13 in the second and 7 in the third 

layer (Fig. 6, bottom panel). The number of layers and 

neurons was determined heuristically. The inputs for neural 

networks are sets of 10 adjacent samples of gyroscope signal 

from sagittal plane. We made window ten samples wide to go 

through the signal to collect samples for the neural network. 

The outputs for the first ANN are the sets of binary values 

corresponding to swing (value 1) and stance (value 0) phases, 

obtained from the fuzzy logic described before. Similarly, the 

outputs for the second ANN are the sets of binary values 

corresponding to flatfoot (value 1) and all other (value 0) 

phases. Our training data set contained 500 x 10 data samples 

from all five subjects. We used 70% of data for training 15% 

for testing, and 15% for validation. We used Matlab Neural 

Network Toolbox, to obtain ANNs. 

 
Fig. 6. FFNN1 is a feed-forward ANN for separation to the swing and stance 

phases and FFNN2 a feed-forward ANN for the detection of subphases of the 
stance phase. 

III. RESULTS 

Fig. 7 shows recorded signals for subject No 1 for nine steps 

(5 with left and 4 with right leg). Top panels show signals 

from insole sensors and middle and bottom panels show 

signals recorded by IMU sensor placed on feet and shanks. 

In Fig. 7 we can notice the repetitive pattern of the gait 

cycle. The heel contact is at the time when the heel contact 

signal starts rising, while other two signals are zero. At the 

same time, the angular velocity measured by IMU increases 

from negative local minimum to zero. When the whole sole 

contacts the ground (all three insole sensors above the 

threshold), then the flat foot occurs. The flat foot beginning 

coincides with the rise of the signal from the metatarsal zone 

sensor. The angular velocity of the foot during the flat foot 

phase is zero because foot does not move. When the signal 

from the sensor under the heel falls to below the threshold, 

then the heel off phase starts. During this phase, angular 

velocity declines because foot and shank are leaning in front 

of the vertical line. The swing phase begins at push off 

moment, which can be detected when the signal from the 

sensor under the toes falls to zero. During the swing phase, 

angular velocity rises from local minimum (acceleration 

phase) to highest peak in whole gait cycle which correspond 

to mid-swing. At that moment leg is fully extended, and heel 

starts to move toward the ground (deceleration phase).  

 
Fig. 7. Recorded signals for subject No1 for nine steps (5 with left and 4 with 

right leg). Top panels show signals from foot pressure sensors (heel – blue; 

metatarsal – orange; toes - yellow), and middle and bottom panels show 

signals recorded by IMU placed on feet and shanks (X-axis – blue; Y-axis – 

orange; Z-axis - yellow).  

 

Fig. 8 shows confusion matrices for the trained ANN. 

FFNN1 has two output classes: 0 (stance phase) and 1 (swing 

phase), and the FNN2 has two output classes: 0 (heel on or 

heel off phase) and 1 (flat foot phase). The mean square errors 

for the FFNN1 are 2.2% and for the FFNN2 are 6.8%. 
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Fig. 8. Confusion matrices for the trained neural networks. First neural 
network (FFNN1, left) has two output classes: 0 (stance phase) and 1 (swing 

phase). Second neural network (FFNN2, right) has two output classes: 0 (heel 

on or heel off phase) and 1 (flat foot phase). 
 

Fig. 9 shows the comparison of signals and detected gait 

phases, recorded by force sensors (top panel) and signals 

(angular velocities) recorded by the IMU gyroscope (middle 

and bottom panels) which was placed on the foot. The data 

shown are from the sensors on the left leg of subject No 1.  

 



 

 
Fig. 9. Comparison of signals and detected gait phases, recorded by foot 

pressure sensors (top panels) and signals recorded by gyroscope placed on 

foot (bottom panels) on the left leg of subject 1.   
 

Fig. 10 shows the comparison of gyroscope signals and 

detected gait phases on both legs for subject No 2.  

 

 
Fig. 10. Comparison of signals and detected gait phases on both legs for 

subject No 2.  

 

Table 2. shows the errors estimated for the duration of 

phases detected from gyroscopes and the phases detected from 

ground reaction force for all subjects. 

 
TABLE 2. ERRORS (IN %) OF ESTIMATED LENGTH OF PHASES DETECTED FROM 

GYROSCOPES AND GROUND REACTION FORCE SENSORS FOR ALL SUBJECTS. 

 

Subject SWING Heel on Flat foot Hell off 

No 1 1.64 11.11 8.33 2.33 

No 2 2.44 12.1 8.87 3.1 

No 3 3.28 11.3 8.82 3.4 

No 4 0.05 10.5 7.9 2.21 

No 5 1.54 11.3 8.22 2.42 
 

Table 3. shows gait parameters obtained from ground 

reaction force signals for all subjects. 

 
TABLE 3. GAIT PARAMETERS OBTAINED FROM GROUND REACTION FORCE 

SIGNALS FOR ALL SUBJECTS. 

 

Subject Step 

[s] 

Stride 

[s] 

Stance 

[s] 

Swing 

[s] 

SSP 

[s] 

DSP 

[s] 

Cadence 

[steps/min] 

No 1 0.8 1.6 0.98 0.61 0.37 0.19 87 

No 2 0.65 1.27 0.76 0.41 0.33 0.14 105 

No 3 0.83 1.67 1.06 0.61 0.35 0.23 84 

No 4 0.73 1.45 0.88 0.56 0.34 0.18 98 

No 5 0.73 1.52 0.87 0.65 0.38 0.14 95 

 

 

Table 4. shows gait parameters obtained from IMU sensor 

placed on foot for all subjects. 
 

TABLE 4. GAIT PARAMETERS OBTAINED FROM IMU SENSOR PLACED ON FOOT 

FOR ALL SUBJECTS 

 

Subject Step 

[s] 

Stride 

[s] 

Stance 

[s] 

Swing 

[s] 

SSP 

[s] 

DSP 

[s] 

Cadence 

[steps/min] 

No 1 0.8 1.58 0.96 0.62 0.34 0.2 87.5 

No 2 0.65 1.2 0.77 0.42 0.32 0.15 105 

No 3 0.83 1.68 1.08 0.59 0.34 0.23 83.8 

No 4 0.72 1.43 0.86 0.56 0.34 0.16 97.6 

No 5 0.73 1.53 0.89 0.64 0.36 0.13 95.02 

 

 

Table 5. shows gait parameters obtained from IMU sensor 

placed on shank for all subjects. 

 
TABLE 5. GAIT PARAMETERS OBTAINED FROM IMU SENSOR PLACED ON 

SHANK FOR ALL SUBJECTS. 

 

Subject Step 

[s] 

Stride 

[s] 

Stance 

[s] 

Swing 

[s] 

SSP 

[s] 

DSP 

[s] 

Cadence 

[st/min] 

No 1 0.8 1.6 1.01 0.59 0.35 0.22 90 

No 2 0.66 1.31 0.81 0.4 0.31 0.17 107.2 

No 3 0.84 1.66 1.13 0.56 0.33 0.27 83.3 

No 4 0.71 1.49 0.93 0.56 0.35 0.16 97.22 

No 5 0.73 1.55 0.9 0.65 0.39 0.17 96 
 

TABLE 6. ERRORS OF ESTIMATED GAIT PARAMETERS (IN PERCENT). 

 

The errors of estimation of the gait parameters are 

presented in Table 2. 

IV. DISCUSSION 

In the top panel in Fig. 9 we can notice that the swing phase 

is not divided into the acceleration and the deceleration phase. 

During the swing phase, the ground reaction force is zero, 

because the foot is not touching the ground. To find the mid-

swing we selected to find the maximum value of the angular 

velocity during the swing phase. 

The confusion matrices in Fig. 8 show that NNs have been 

trained well based on the calculated small mean square errors. 

These errors manifest as gaps in phases. These gaps are easy 

to correct afterward, by merging them with surrounding phase 

by using the constraint that the phase will be considered only 

if it lasts for a minimum of 100 ms. If we used only one ANN 

to detect all phases, then the correction of these errors would 

be much more complicated. 

We calculated all gait parameters based on heel contact and 

toes off moments. Therefore, only the detection of swing and 

stance phase has the influence to the accuracy of these 

parameters. As we can notice in Table 6, the error of 

Subject No  1 No 2 No 3 No 4 No 5 All 

Foot 

[%] 1.9 2.78 1 2.85 1.99 2.1 

Shank 

[%] 4.17 4.96 5.8 4.62 3.26 4.56 



 

estimation of gait parameters from angular velocity of the foot 

is 2.1 % that fits the error of FFNN1, which is used as the 

decision for the differentiation between the swing and the 

stance phases. When we applied same NN to the signals from 

IMU placed on the shank, the error increased to 4.56%. This 

increasing error was expected because the angular velocity of 

the shank carries less information about the phase of the gait 

compared with the information from the foot. To improve 

accuracy and have a more robust system we should train NN 

with more samples coming from sensors positions at different 

places on the shank and foot. 

In Table 2 we can notice that errors of estimation of sub-

phases of the stance phase are significantly larger than errors 

of estimation of swing phase and stance phase. The duration 

of these sub-phases is approximately three times shorter than 

swing phase. Therefore, one or two wrongly classified 

samples have a large influence to the error. This result was 

expected because in the swing phase and the heel off phase 

there is much more movement of a foot than in other phases. 

Therefore, from the heel contact to the beginning of the heel 

off phase there, there is a relatively small variation of angular 

velocity signal, and it hinders accurate classification. Since 

determining of the beginning of flat foot phase is not an 

important parameter for the gait analysis, IMUs still can 

provide acceptable results for the clinical work.  

The primary goal of this study was to evaluate the simple 

system consisting of IMU positioned at the leg for detection 

of gait phases. We show that this was a valid hypothesis. 

Literature data [10-12] report the mean errors in the range 

between 2.7% and 12%; hence, our results prove that the 

suggested instrumentation and signal processing are 

applicable for clinical gait analysis in rehabilitation.  

To improve the accuracy presented in this manuscript a 

larger dataset should be used for the training of the neural 

network, and short time series of consecutive moments used 

instead of only one moment like it was done in [16]. The 

further tests need to include various gait modalities. 
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