


Abstract—A mobile robot that determines the shape and size

of an unknown workspace is presented in this paper. The robot

is wheeled, and equipped with a controller and cliff sensors.

The main goal of this paper is to demonstrate the potential use

of neural networks for workspace mapping. A workspace can

be a table or any other surface with cliff boundaries, assuming

that the robot can reach all of its boundaries. The detection of

the workspace cliff boundaries is accomplished using infrared

sensors that are pointed downwards. The body of the robot is

designed and manufactured using a 3D printer. Robot uses

differential drive to move, and odometry for position sensing.

The motion control algorithm is explained in detail. Controller

is based around Raspberry Pi 3. The description of the neural

network that determines the shape and size of the workspace is

presented, along with test results. The robot is tested for

determining the size and shape of a rectangular workspace

with the dimensions of 70 cm x 50 cm.

Index Terms—Workspace mapping, differential drive,

odometry, artificial neural networks.

I. INTRODUCTION

A mobile robot can be defined as a mobile and

manipulative physical system that autonomously moves in

unstructured space, while interacting with human beings or

autonomously executing a task instead of them [1]. A

machine can be considered mobile if it meets the set

requirements:

- Mobility: The robot must be able to move freely

inside the workspace.

- Autonomy: Human interaction with the robot is

minimal and limited to its task.

- Perception: To be able to successfully work in the

environment, the robot must possess sensors

which would detect the changes happening

inside of it.

Taking into consideration above mentioned requirements,

a mobile robot that maps an unknown workspace has been

designed. The robot control application is located directly

inside the robot, on a Raspberry Pi 3. This allows it to

autonomously map the workspace without any human

interaction needed. The obtained map can then be

transferred from the robot to a more powerful computer for

Vladimir Mitić is with the University of Niš, Faculty of Electronic

Engineering, Serbia (e-mail: vladimir.mitic@elfak.ni.ac.rs).

Miloš Petković is with the University of Niš, Faculty of Electronic

Engineering, Serbia (e-mail: milos.petkovic@elfak.ni.ac.rs).

Vladimir Sibinović is with the University of Niš, Faculty of Electronic

Engineering, Serbia (e-mail: vladimir.sibinovic@elfak.ni.ac.rs).

Darko Todorović is with the University of Niš, Faculty of Electronic

Engineering, Serbia (e-mail: darko.todorovic@elfak.ni.ac.rs).

Professor Goran S. Đorđević is with the University of Niš, Faculty of

Electronic Engineering, Serbia (e-mail: goran.s.djordjevic@elfak.ni.ac.rs).

further analysis. It can also be used to ensure that, once the

robot determines the map, it never goes near the boundary of

the workspace. A workspace can be a table or any other

surface with cliff boundaries, assuming that the robot can

reach all of its boundaries.

The drive of the robot was chosen to be differential drive,

because of the possible maneuverability that it provides with

simple motor control [2]. The drive of the robot consists of

two motored wheels that are located on the left and right

side, and two ball caster wheels located on the front and

back. The negative side of this configuration is that it is not

suitable for uneven floors, because unwanted direction shifts

can occur.

The localization of the robot is implemented using

odometry on the two motored wheels. For that purpose,

motors with integrated incremental encoders where chosen.

The position is calculated in respect to the robot’s initial

position upon starting the application. Odometry calculation

is done by calculating the traveled distance of each wheel

for a certain period, and then using that distance to

determine the length and radius of the arc which robot

describes on the map. If the calculated radius is infinite, the

robot is moving in a straight path. Odometry is convenient

because it doesn’t require any changes done in the

workspace. The problem when using odometry is with the

constantly increasing error that accumulates because of the

slippage of the wheels and the fact that there is no reference

point present, except the starting point. Therefore, odometry

is mostly used as a correction factor to an absolute

positioning system to improve accuracy [3].

The cliff boundary detection is accomplished using four

infrared sensors that are pointing downwards and are located

on the corners of the robot. The sensors used have digital

outputs that represent if the sensor is detecting the surface or

not. The activation threshold for each of the sensors is

defined manually via four trimmer resistors located on the

PCB.

Summing up all defined characteristics, we can see that

the task is to determine the workspace map, using unreliable

localization system, and with limited information of the

workspace boundaries. Having this in mind we wanted to

see if it is possible to obtain enough useful information

using these methods, with limited computing power. To

achieve this, motion control algorithms needed to be

carefully designed, because only with good path planning it

is possible to overcome some of the shortcomings of the

system. The data obtained from the sensors is then passed to

a neural network that determines the workspace map. The

neural network, through training, tries to filter the data and

extract useful information from it.

Intelligent Mobile Robot for Workspace

Mapping

Vladimir Mitić, Miloš Petković, Vladimir Sibinović, Darko Todorović, Goran S. Đorđević, Faculty

of Electronic Engineering, University of Niš

Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering,
IcETRAN 2017, Kladovo, Serbia, June 05-08, ISBN 978-86-7466-692-0

pp. AUI2.5.1-5

II. ROBOT CONSTRUCTION AND CONTROL APPLICATION

The design process of the robot included 3D modeling of

the robot body, as well as control algorithms design. There

were a couple of major issues that had to be overcome:

- Component placement and, most importantly,

sensor placement;

- Robot movement algorithms that ensure enough

relevant data is obtained from the workspace;

- Encoder reading, and localization calculation;

- Neural network architecture definition;

- Synchronization of all the subsystems.

The dimensions of the robot are limited by the

dimensions of the workspace that needs to be determined.

Because the sensors are pointing downwards the simplest

workspace setup presented a rectangular table with the

dimensions of 70 cm x 50 cm. This means that the robot

dimensions shouldn’t be over 20 cm. The components that

are needed for robot control can be divided into four groups:

Single-Board Computer (SBC) for high level control, PCB

for motor control, PCB for sensor reading and PCB for

encoder reading. Taking into consideration the component

size as well as the robot dimensions, the components needed

to be placed in three levels.

A. Robot body

The robot body was designed in a 3D modeling software

and made on a 3D printer. The robot is symmetrical in order

to simplify the motion control algorithms and ensure that the

workspace boundaries would be detected in the same

manner when moving in either direction. The robot body

consists of a rectangular plate with rounded short sides. The

longer sides are extended with straight segments that stretch

beyond the body surface so that the sensors could be placed

far enough from the wheels and the robot has room to stop

without crossing the boundaries. On the middle of the longer

sides the motored wheels are attached, and on the middle of

the shorter sides the caster wheels are attached. The battery

is placed beneath the body plate and is attached to it with zip

ties.

Fig. 1. 3D body plate design. The robot length is 20 cm, and the width is

16 cm.

The mounting holes for the three-layer component

placement are also envisioned into the design. The four

infrared sensors are attached to the robot body on the

extended sides using an L shaped 3D printed holder. The

holder provides the ability to adjust the distance between the

sensors and the surface, as well as the width of the sensors

coverage area.

B. Component placement

In order to retain the small dimensions of the robot,

because every peripheral has its own PCB, the component

placement had to be done in three levels (Fig. 2.). The

bottom layer contains the PCB for the encoder reading. It

was not possible to connect the encoders directly to the

Raspberry Pi 3, so a PCB with a microcontroller that reads

the encoders and forwards that information via UART was

designed [4]. The second layer contains only the Raspberry

Pi 3 that controls all the peripherals. Raspberry Pi 3 uses 3.3

V logic levels on all the pins and they are not fully TTL

compatible. Therefore, logic level shifters were connected to

all pins. The top layer contains the motor driver and the

PCB for sensor reading. The motor driver is a standard H-

bridge driver L298N. Because all the peripherals have their

respective PCBs which operate on different logic levels, the

wiring of the robot presented a significant challenge.

Fig 2. Assembled robot with all the necessary components and wiring.

C. Robot control application

Robot control application is developed in C++

programming language. The application consists of four

parts that are separated as four classes. The first class is

named Drive and it realizes the motion control algorithms,

keeping the robot inside the boundaries of the workspace.

The second class is named Mailer and it handles the

communication with the microcontroller for encoder

reading. The traveled distance for each wheel is also

calculated here. The third class, named Positioner,

calculates the robot coordinates in respect to its initial

position. The last class is the main class, and it handles the

data synchronization between all three classes. It also

generates data for the neural network and determines when

the data set is large enough so the robot can stop moving.

When the data set is obtained, it is passed to a neural

network, created using Fast Artificial Neural Network

Library (FANN). After training the network using this data

set, a test data set is run through the network and the results

are exported to a file. The training data set, as well as the

neural network parameters are also exported to files for later

analysis and processing.

D. Motion control algorithms

Designing, and later fine tuning, the motion control

algorithms presented a challenging task because the

algorithm needed to take into consideration all the

imperfections of the 3D printing and mounting, as well as

transport delays that are present in the system. The motion

control can be divided into two parts: speed profile and

direction determination, and speed ramp realization.

The motor is controlled with a PWM signal, where the

duty cycle of the signal is directly proportional to its speed.

When changing the speed, a speed profile is defined to avoid

wheel slippage. A trapezoid speed profile with

programmable acceleration was chosen for the motor

control. This minimized the wheel slippage which is a

crucial point because the position relies solely on odometry.

When accelerating, the angle of the ramp is allowed be

lower because slower acceleration doesn’t present an issue,

and this ensures that the wheel doesn’t slip. When

decelerating, the angle of the ramp must be higher to ensure

timely stopping without crossing the boundary. Breaking

wasn’t implemented on the motor because that would

increase the chance of wheel slippage. The angle of the

ramp can be dynamically changed for different stopping

scenarios.

Speed profile and direction determination was designed in

that way so the robot moves near the edge of the workspace

because the most relevant data for this system is located

here. The algorithm is designed in a way that the boundary

of the workspace stays on the left side of the robot. Also, the

algorithm has a preferred direction of movement which is, in

this case, going forwards. What this means is that the robot

will go to the boundary, then stop, back up a little turning to

the left, and start going forwards again. This kind of

movement ensures that the robot can’t enter an endless loop

of forwards-backwards motion on a single path. It also

minimizes the time needed to collect enough data for the

workspace mapping because the robot is going around the

workspace, near the edge, in a clockwise direction.

When the application starts, the robot goes forward in a

straight path until it reaches the boundary of the workspace.

When a sensor detects the cliff, robot stops and waits for the

conformation to continue moving. Confirmation signal

comes from the synchronization thread that ensures that the

coordinates of the workspace boundary are stored when the

robot is still. After the coordinates have been stored, the

algorithm choses the desired speed and direction for every

motor based on the sensor readings. Because the preferred

direction of movement is forwards, if the sensors readings

suggest that the robot needs to go backwards, it would do so

for a maximum of 550 ms. After that, the robot stops and

starts moving straight forward again. If, in the meanwhile,

any of the rear sensors is activated, the robot will stop and

choose a desired forward curved path, but it will keep this

setting for a maximum of 1 s. After 1 s the algorithm

changes the path to straight again, to avoid entering an

endless loop. Also, speed is decreased after 1 s of movement

because a greater speed is needed to overcome static

friction, but afterwards a slower speed will ensure safer

stopping. After an enough amount of data is collected, the

main thread initiates a stop command, which breaks the loop

and exists the drive mode.

To achieve the movement that was described in the

previous paragraph, the robot needed to be able to perform

different maneuvers. This set of maneuvers included straight

paths, different radius curved paths as well as rotating in

place. Rotation in place is especially important for getting

out of corners in the workspace. To achieve this, 5

possibilities for the desired speed were defined in respect to

the highest motor speed: 100 %, 90 %, 88 %, 84 %, and 80

%. The speed profile and motor direction selection is

influenced by a couple of factors. Current speed, direction,

and travelling time are some of them, but the main factor

that determines the desired speed profile is sensor reading

i.e. if the boundary is detected or not. We used only 4

infrared sensors with digital outputs, where logical 1

represents boundary detection. This means that there are 16

possible combinations for the sensor readings which reflect

on 16 states. Only 9 of 16 states are considered valid

because these are the states that the robot can autonomously

resolve. Figure 3. shows the enumeration of the sensors for

better understanding of the defined speed profiles.

Fig. 3. Sensor enumeration and direction of movement definition.

Every state in which the sensors placed diagonally are

activated indicates that the robot is stuck and can’t move on

its own. These states represent the following sensor

combinations: 0-2, 0-1-2, 1-3, 0-1-3, 0-2-3, 1-2-3, 0-1-2-3.

When only the sensor 0 is activated, the left motor speed

is set to 84%, the right motor speed is set to 100%, and the

direction of the movement is forwards. This is the case when

the robot has detected the boundary on its right back side,

while backing up. Therefore, it needs to make a hard-left

turn so that the boundary is located to its left side.

When only the sensor 3 is activated, the left and the right

motor speed is set to 88%, and the direction of the

movement is forwards. This is the case when the robot has

detected the boundary on its left back side, while backing

up. Because backing up is done in a curved path, the robot

goes forwards which ensures that it will move on along the

edge.

Activation of both rear sensors (0-3) indicate that the

robot is facing directly away from the workspace boundary,

and it mostly happens when the robot is turning in place to

get out of a tight corner. Therefore, the left motor speed is

set to 80%, the right motor speed is set to 100%, and the

desired direction of the movement is forwards. This way, the

robot turns to the boundary with its front side.

If the sensor 1, or the combination 1-2 is activated, the

left motor speed is set to 80%, the right motor speed is set to

100%, and the direction of the movement is backwards. This

combination indicates that the robot approached the

boundary with the front side, but not at the desired angle, so

a smaller radius left turn is chosen.

If only sensor 2 is activated, the left motor speed is set to

84%, the right motor speed is set to 100%, and the direction

of the movement is backwards. This indicates that the robot

approached the boundary in a desired manner, therefore, a

larger radius left turn is chosen.

If the activated sensor combination is 2-3, the robot will

rotate in place. This sensor combination occurs only then the

robot is in the corner of the workspace, which is located on

its left side. In order to get out of this situation, the left

motor speed is set to 80%, the right motor speed is set to

90%, the left motor direction is forwards, and the right

motor direction is backwards. This movement stops only

when sensor 0, the combination 0-3, or any of the invalid

combinations are activated. In the first two cases the robot

will go forwards as described in the previous paragraph.

If the activated sensor combination is 0-1, we have a

similar case like in the last paragraph. The only difference is

that the corner is now located at the robot’s right side. The

left motor speed is set to 90%, the right motor speed is set to

80%, the left motor direction is backwards, and the right

motor direction is forwards. The stopping logic is the same

as in the previous case. This case is rarely encountered,

because of the way the robot moves, keeping the boundary

to its left side.

After the algorithm determines the desired speed profile,

a function that changes the PWM duty cycle according to

that profile is called. From the selected speed profiles, it is

obvious that every sensor combination had to be thoroughly

analyzed for cause and effect, to ensure that the robot moves

in a desired manner inside the workplace.

E. Odometry reading and position calculation

The incremental encoder reading is implemented using an

integrated circuit HCTL-2032 connected to a

microcontroller PIC18F4431. The microcontroller obtains

the number of pulses from the HCTL-2032 with the

direction of movement, and forwards that information to the

Raspberry Pi 3 via UART communication.

Every time, the encoder reading information is refreshed,

a new robot position is calculated based on the traveled

distance of each wheel. When the application starts, the

current robot position and orientation are used for defining

the reference coordinate system, and all the coordinates are

calculated in respect to that coordinate system. This means

that, every time the robot is used to map the same

workspace, the workspace boundaries will have different

coordinates. The workspace shape and dimensions, on the

other hand, stay the same and they can be later used for

calculating the absolute robot position inside it.

F. Neural network

The neural network was designed to calculate the

probability of a point being inside or outside the workspace.

If the point is inside the workspace, the neural network

should give an output of 0. If the point is outside the

workspace, the neural network should give an output of 1.

This basically means that the neural network has two inputs

(one for each coordinate) and one output. The coordinates

are passed in cm in order to speed up the network. The

network represents a conventional three-layered curve

fitting neural network. It has 4 neurons in the hidden layer.

The activation functions for the neurons in the hidden layers

are sigmoid, while the activation function of the neuron in

the output layer is linear. Training algorithm used is a

standard Backpropagation algorithm. To obtain satisfying

training results with a reasonable data set, the algorithm

needed up to 1000 training epochs. Many times, the

algorithm finished even before the 400. training epoch.

G. Obtaining workspace information data

After we have defined the robot motion control algorithm

along with the position calculation, workspace information

data needed to be formatted in a way that is suitable for

neural network training. Because the neural network has two

inputs and one output, one training data sample contained

three parameters. For every calculated robot position, the

sensor readings were used to define the desired output of the

network. If the sensors weren’t detecting, the output would

be 0, and in the other case the output would be 1. While

obtaining the data set there were a couple of important

issues that need to be resolved. For the network to provide

good results, the data set should be large enough, without

any conflicting points. Also, with every new position,

odometry error increases and in that manner the robot

movement time should be as minimal as possible. Finally,

the data set should contain the equal number of points for

both inside and outside the workspace. The motion control

algorithm solves the last problem buy guiding the robot to

move along the edge. The solution to the first two problems

we found in adding “fake” points. The added points were

“fake” because the robot didn’t necessarily pass through

them, but we can predict whether they are inside or outside

the workspace. If the robot is inside the workspace, and we

draw a line between its position and the coordinate center,

we can claim that all the points on that line between the

robot’s position and the coordinate center are inside the

workspace. So, we take 5 equidistant points on that line and

add them as “fake”. In that manner, it the robot is on the

workspace boundary, and we draw a line between its

position and the coordinate center, we can claim that all the

points on that line further from the robot’s position are

outside the workspace. We also take 5 equidistant points on

that line and add them as “fake”. This is only possible if the

mapped workspace is represented with a convex figure.

After, a large enough data set has been obtained, a function

that removes duplicate points and resolves conflicted points

is executed. Duplicate points appear when robot passes

through the same point more than one time. Conflicted

points appear on the boundary of the workspace due to

positioning error. A point can in one case be interpreted as

inside and in the other as outside the workspace. In this case,

the function removes the point that is declared as inside in

order to enlarge the boundary data points set.

III. TEST RESULTS

The robot was tested for mapping a rectangular table with

the dimensions of 70cm x 50 cm. To achieve good results,

the network required 2000 points inside the workspace and

1200 point outside the workspace. This data set includes the

“fake” points with duplicates and conflicted points. After

removing the duplicates and conflicted points, the data set

was decreased to 1959 points in total. The mean-square

error of the training was 0.043 after 1000 training epochs.

Another way of calculating the error is in the number of

outputs that differ from the desired output by a certain

margin. If we set that margin to be 0.49, the number of false

outputs is 121, which represents 6.18 % of the training data

set. The training of the neural network lasts a couple of

seconds depending on the data set. This is why the neural

network training must be done after the robot has stopped

moving.

Fig. 4. Training data set for points inside the workspace, including “fake”

points.

Fig. 5. Training data set for points outside the workspace, including “fake”

points.

Fig. 6. Neural network output for points in the range of -50 cm to 50 cm.

Blue points indicate points inside the workspace.

The results show that the neural network successfully

determined the size and shape of the tested workspace. The

output of the neural network is rounded before plotting on

this figure in order to have a clear separation of the points

inside and outside the workspace. The real output suggests

the probability of a point being inside the workspace, and

with that kind of data, better mapping of the workspace can

be done. A workspace map of this kind can now be easily

used for a robot motion control algorithm that ensures that

the robot never gets near the boundary of the workspace.

IV. CONCLUSION

Analyzing the results we can come to a conclusion that it

is possible to use neural networks for workspace mapping.

However, because of the large amount of time that is needed

to train the neural network, it seems that it would be more

applicable if the robot only obtains the data. That data can

then be forwarded to a more powerful computer that would

calculate the map and send it to the robot. Because of the

limited computing power, the simplest network architecture

was chosen for this robot, and this needs to be upgraded to

achieve better results for various workspace configurations.

For further work we plan to change the architecture of the

neural network and the data acquisition algorithm in order to

be able to map nonconvex workspaces as well. The

localization based on odometry showed that even with a

constantly increasing error, useful information can be

obtained from it. However, on a larger scale, where the

workspace size can be a couple of times larger than this one,

this kind of localization would have unacceptable errors.

Therefore, for the next development, an absolute

localization system should be selected, e.g. a camera based

system.

REFERENCES

[1] J. Defever B. Francis and T. Geerinck, “Mobile Robots with Shared

Autonomy”, Vrije Universiteit Brussel, Brussels, Belgium, 2004

[2] Dudek G., Jenkin M. „Computational Principles of Mobile Robotics

2nd edition“, 2010.

[3] Borenstein J., Everett H. R., Feng L. „Where am I? Sensors and

Methods for Mobile Robot Positioning“, 1996.

[4] V. Sibinović et al. “Mobile Robot Odometry Using High Resolution

Incremental Encoders and Single Board Computers”, 2017

