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Abstract—A mobile robot that determines the shape and size 

of an unknown workspace is presented in this paper. The robot 

is wheeled, and equipped with a controller and cliff sensors. 

The main goal of this paper is to demonstrate the potential use 

of neural networks for workspace mapping. A workspace can 

be a table or any other surface with cliff boundaries, assuming 

that the robot can reach all of its boundaries. The detection of 

the workspace cliff boundaries is accomplished using infrared 

sensors that are pointed downwards. The body of the robot is 

designed and manufactured using a 3D printer. Robot uses 

differential drive to move, and odometry for position sensing. 

The motion control algorithm is explained in detail. Controller 

is based around Raspberry Pi 3. The description of the neural 

network that determines the shape and size of the workspace is 

presented, along with test results. The robot is tested for 

determining the size and shape of a rectangular workspace 

with the dimensions of 70 cm x 50 cm.  

 

Index Terms—Workspace mapping, differential drive, 

odometry, artificial neural networks. 

I. INTRODUCTION 

A mobile robot can be defined as a mobile and 

manipulative physical system that autonomously moves in 

unstructured space, while interacting with human beings or 

autonomously executing a task instead of them [1]. A 

machine can be considered mobile if it meets the set 

requirements: 

- Mobility: The robot must be able to move freely 

inside the workspace. 

- Autonomy: Human interaction with the robot is 

minimal and limited to its task. 

- Perception: To be able to successfully work in the 

environment, the robot must possess sensors 

which would detect the changes happening 

inside of it. 

Taking into consideration above mentioned requirements, 

a mobile robot that maps an unknown workspace has been 

designed. The robot control application is located directly 

inside the robot, on a Raspberry Pi 3. This allows it to 

autonomously map the workspace without any human 

interaction needed. The obtained map can then be 

transferred from the robot to a more powerful computer for 
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further analysis. It can also be used to ensure that, once the 

robot determines the map, it never goes near the boundary of 

the workspace. A workspace can be a table or any other 

surface with cliff boundaries, assuming that the robot can 

reach all of its boundaries.  

The drive of the robot was chosen to be differential drive, 

because of the possible maneuverability that it provides with 

simple motor control [2]. The drive of the robot consists of 

two motored wheels that are located on the left and right 

side, and two ball caster wheels located on the front and 

back. The negative side of this configuration is that it is not 

suitable for uneven floors, because unwanted direction shifts 

can occur.  

The localization of the robot is implemented using 

odometry on the two motored wheels. For that purpose, 

motors with integrated incremental encoders where chosen. 

The position is calculated in respect to the robot’s initial 

position upon starting the application. Odometry calculation 

is done by calculating the traveled distance of each wheel 

for a certain period, and then using that distance to 

determine the length and radius of the arc which robot 

describes on the map. If the calculated radius is infinite, the 

robot is moving in a straight path. Odometry is convenient 

because it doesn’t require any changes done in the 

workspace. The problem when using odometry is with the 

constantly increasing error that accumulates because of the 

slippage of the wheels and the fact that there is no reference 

point present, except the starting point. Therefore, odometry 

is mostly used as a correction factor to an absolute 

positioning system to improve accuracy [3]. 

The cliff boundary detection is accomplished using four 

infrared sensors that are pointing downwards and are located 

on the corners of the robot. The sensors used have digital 

outputs that represent if the sensor is detecting the surface or 

not. The activation threshold for each of the sensors is 

defined manually via four trimmer resistors located on the 

PCB. 

Summing up all defined characteristics, we can see that 

the task is to determine the workspace map, using unreliable 

localization system, and with limited information of the 

workspace boundaries. Having this in mind we wanted to 

see if it is possible to obtain enough useful information 

using these methods, with limited computing power. To 

achieve this, motion control algorithms needed to be 

carefully designed, because only with good path planning it 

is possible to overcome some of the shortcomings of the 

system. The data obtained from the sensors is then passed to 

a neural network that determines the workspace map. The 

neural network, through training, tries to filter the data and 

extract useful information from it.  
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II. ROBOT CONSTRUCTION AND CONTROL APPLICATION 

The design process of the robot included 3D modeling of 

the robot body, as well as control algorithms design. There 

were a couple of major issues that had to be overcome: 

 

- Component placement and, most importantly, 

sensor placement; 

- Robot movement algorithms that ensure enough 

relevant data is obtained from the workspace; 

- Encoder reading, and localization calculation; 

- Neural network architecture definition; 

- Synchronization of all the subsystems. 

 

The dimensions of the robot are limited by the 

dimensions of the workspace that needs to be determined. 

Because the sensors are pointing downwards the simplest 

workspace setup presented a rectangular table with the 

dimensions of 70 cm x 50 cm. This means that the robot 

dimensions shouldn’t be over 20 cm. The components that 

are needed for robot control can be divided into four groups: 

Single-Board Computer (SBC) for high level control, PCB 

for motor control, PCB for sensor reading and PCB for 

encoder reading. Taking into consideration the component 

size as well as the robot dimensions, the components needed 

to be placed in three levels. 

A. Robot body 

The robot body was designed in a 3D modeling software 

and made on a 3D printer. The robot is symmetrical in order 

to simplify the motion control algorithms and ensure that the 

workspace boundaries would be detected in the same 

manner when moving in either direction. The robot body 

consists of a rectangular plate with rounded short sides. The 

longer sides are extended with straight segments that stretch 

beyond the body surface so that the sensors could be placed 

far enough from the wheels and the robot has room to stop 

without crossing the boundaries. On the middle of the longer 

sides the motored wheels are attached, and on the middle of 

the shorter sides the caster wheels are attached. The battery 

is placed beneath the body plate and is attached to it with zip 

ties.  

 
Fig. 1. 3D body plate design. The robot length is 20 cm, and the width is 

16 cm. 

 

The mounting holes for the three-layer component 

placement are also envisioned into the design. The four 

infrared sensors are attached to the robot body on the 

extended sides using an L shaped 3D printed holder. The 

holder provides the ability to adjust the distance between the 

sensors and the surface, as well as the width of the sensors 

coverage area. 

B. Component placement 

In order to retain the small dimensions of the robot, 

because every peripheral has its own PCB, the component 

placement had to be done in three levels (Fig. 2.). The 

bottom layer contains the PCB for the encoder reading. It 

was not possible to connect the encoders directly to the 

Raspberry Pi 3, so a PCB with a microcontroller that reads 

the encoders and forwards that information via UART was 

designed [4]. The second layer contains only the Raspberry 

Pi 3 that controls all the peripherals. Raspberry Pi 3 uses 3.3 

V logic levels on all the pins and they are not fully TTL 

compatible. Therefore, logic level shifters were connected to 

all pins. The top layer contains the motor driver and the 

PCB for sensor reading. The motor driver is a standard H-

bridge driver L298N. Because all the peripherals have their 

respective PCBs which operate on different logic levels, the 

wiring of the robot presented a significant challenge. 

 

 
Fig 2. Assembled robot with all the necessary components and wiring. 

C. Robot control application 

Robot control application is developed in C++ 

programming language. The application consists of four 

parts that are separated as four classes. The first class is 

named Drive and it realizes the motion control algorithms, 

keeping the robot inside the boundaries of the workspace. 

The second class is named Mailer and it handles the 

communication with the microcontroller for encoder 

reading. The traveled distance for each wheel is also 

calculated here. The third class, named Positioner, 

calculates the robot coordinates in respect to its initial 

position. The last class is the main class, and it handles the 

data synchronization between all three classes. It also 

generates data for the neural network and determines when 

the data set is large enough so the robot can stop moving. 

When the data set is obtained, it is passed to a neural 



 

network, created using Fast Artificial Neural Network 

Library (FANN). After training the network using this data 

set, a test data set is run through the network and the results 

are exported to a file. The training data set, as well as the 

neural network parameters are also exported to files for later 

analysis and processing.  

D. Motion control algorithms 

Designing, and later fine tuning, the motion control 

algorithms presented a challenging task because the 

algorithm needed to take into consideration all the 

imperfections of the 3D printing and mounting, as well as 

transport delays that are present in the system. The motion 

control can be divided into two parts: speed profile and 

direction determination, and speed ramp realization.  

The motor is controlled with a PWM signal, where the 

duty cycle of the signal is directly proportional to its speed. 

When changing the speed, a speed profile is defined to avoid 

wheel slippage. A trapezoid speed profile with 

programmable acceleration was chosen for the motor 

control. This minimized the wheel slippage which is a 

crucial point because the position relies solely on odometry. 

When accelerating, the angle of the ramp is allowed be 

lower because slower acceleration doesn’t present an issue, 

and this ensures that the wheel doesn’t slip. When 

decelerating, the angle of the ramp must be higher to ensure 

timely stopping without crossing the boundary. Breaking 

wasn’t implemented on the motor because that would 

increase the chance of wheel slippage. The angle of the 

ramp can be dynamically changed for different stopping 

scenarios. 

Speed profile and direction determination was designed in 

that way so the robot moves near the edge of the workspace 

because the most relevant data for this system is located 

here. The algorithm is designed in a way that the boundary 

of the workspace stays on the left side of the robot. Also, the 

algorithm has a preferred direction of movement which is, in 

this case, going forwards. What this means is that the robot 

will go to the boundary, then stop, back up a little turning to 

the left, and start going forwards again. This kind of 

movement ensures that the robot can’t enter an endless loop 

of forwards-backwards motion on a single path. It also 

minimizes the time needed to collect enough data for the 

workspace mapping because the robot is going around the 

workspace, near the edge, in a clockwise direction. 

When the application starts, the robot goes forward in a 

straight path until it reaches the boundary of the workspace. 

When a sensor detects the cliff, robot stops and waits for the 

conformation to continue moving. Confirmation signal 

comes from the synchronization thread that ensures that the 

coordinates of the workspace boundary are stored when the 

robot is still. After the coordinates have been stored, the 

algorithm choses the desired speed and direction for every 

motor based on the sensor readings. Because the preferred 

direction of movement is forwards, if the sensors readings 

suggest that the robot needs to go backwards, it would do so 

for a maximum of 550 ms. After that, the robot stops and 

starts moving straight forward again. If, in the meanwhile, 

any of the rear sensors is activated, the robot will stop and 

choose a desired forward curved path, but it will keep this 

setting for a maximum of 1 s. After 1 s the algorithm 

changes the path to straight again, to avoid entering an 

endless loop. Also, speed is decreased after 1 s of movement 

because a greater speed is needed to overcome static 

friction, but afterwards a slower speed will ensure safer 

stopping. After an enough amount of data is collected, the 

main thread initiates a stop command, which breaks the loop 

and exists the drive mode. 

To achieve the movement that was described in the 

previous paragraph, the robot needed to be able to perform 

different maneuvers. This set of maneuvers included straight 

paths, different radius curved paths as well as rotating in 

place. Rotation in place is especially important for getting 

out of corners in the workspace. To achieve this, 5 

possibilities for the desired speed were defined in respect to 

the highest motor speed: 100 %, 90 %, 88 %, 84 %, and 80 

%. The speed profile and motor direction selection is 

influenced by a couple of factors. Current speed, direction, 

and travelling time are some of them, but the main factor 

that determines the desired speed profile is sensor reading 

i.e. if the boundary is detected or not. We used only 4 

infrared sensors with digital outputs, where logical 1 

represents boundary detection. This means that there are 16 

possible combinations for the sensor readings which reflect 

on 16 states. Only 9 of 16 states are considered valid 

because these are the states that the robot can autonomously 

resolve. Figure 3. shows the enumeration of the sensors for 

better understanding of the defined speed profiles. 

  

 
 

Fig. 3. Sensor enumeration and direction of movement definition. 

 

Every state in which the sensors placed diagonally are 

activated indicates that the robot is stuck and can’t move on 

its own. These states represent the following sensor 

combinations: 0-2, 0-1-2, 1-3, 0-1-3, 0-2-3, 1-2-3, 0-1-2-3. 

When only the sensor 0 is activated, the left motor speed 

is set to 84%, the right motor speed is set to 100%, and the 

direction of the movement is forwards. This is the case when 

the robot has detected the boundary on its right back side, 

while backing up. Therefore, it needs to make a hard-left 

turn so that the boundary is located to its left side.  

When only the sensor 3 is activated, the left and the right 

motor speed is set to 88%, and the direction of the 

movement is forwards. This is the case when the robot has 

detected the boundary on its left back side, while backing 

up. Because backing up is done in a curved path, the robot 

goes forwards which ensures that it will move on along the 

edge.  



 

Activation of both rear sensors (0-3) indicate that the 

robot is facing directly away from the workspace boundary, 

and it mostly happens when the robot is turning in place to 

get out of a tight corner. Therefore, the left motor speed is 

set to 80%, the right motor speed is set to 100%, and the 

desired direction of the movement is forwards. This way, the 

robot turns to the boundary with its front side. 

If the sensor 1, or the combination 1-2 is activated, the 

left motor speed is set to 80%, the right motor speed is set to 

100%, and the direction of the movement is backwards. This 

combination indicates that the robot approached the 

boundary with the front side, but not at the desired angle, so 

a smaller radius left turn is chosen. 

If only sensor 2 is activated, the left motor speed is set to 

84%, the right motor speed is set to 100%, and the direction 

of the movement is backwards. This indicates that the robot 

approached the boundary in a desired manner, therefore, a 

larger radius left turn is chosen.  

If the activated sensor combination is 2-3, the robot will 

rotate in place. This sensor combination occurs only then the 

robot is in the corner of the workspace, which is located on 

its left side. In order to get out of this situation, the left 

motor speed is set to 80%, the right motor speed is set to 

90%, the left motor direction is forwards, and the right 

motor direction is backwards. This movement stops only 

when sensor 0, the combination 0-3, or any of the invalid 

combinations are activated. In the first two cases the robot 

will go forwards as described in the previous paragraph. 

If the activated sensor combination is 0-1, we have a 

similar case like in the last paragraph. The only difference is 

that the corner is now located at the robot’s right side. The 

left motor speed is set to 90%, the right motor speed is set to 

80%, the left motor direction is backwards, and the right 

motor direction is forwards. The stopping logic is the same 

as in the previous case. This case is rarely encountered, 

because of the way the robot moves, keeping the boundary 

to its left side. 

After the algorithm determines the desired speed profile, 

a function that changes the PWM duty cycle according to 

that profile is called. From the selected speed profiles, it is 

obvious that every sensor combination had to be thoroughly 

analyzed for cause and effect, to ensure that the robot moves 

in a desired manner inside the workplace.  

E. Odometry reading and position calculation 

The incremental encoder reading is implemented using an 

integrated circuit HCTL-2032 connected to a 

microcontroller PIC18F4431. The microcontroller obtains 

the number of pulses from the HCTL-2032 with the 

direction of movement, and forwards that information to the 

Raspberry Pi 3 via UART communication.  

Every time, the encoder reading information is refreshed, 

a new robot position is calculated based on the traveled 

distance of each wheel. When the application starts, the 

current robot position and orientation are used for defining 

the reference coordinate system, and all the coordinates are 

calculated in respect to that coordinate system. This means 

that, every time the robot is used to map the same 

workspace, the workspace boundaries will have different 

coordinates. The workspace shape and dimensions, on the 

other hand, stay the same and they can be later used for 

calculating the absolute robot position inside it.  

F. Neural network 

The neural network was designed to calculate the 

probability of a point being inside or outside the workspace. 

If the point is inside the workspace, the neural network 

should give an output of 0. If the point is outside the 

workspace, the neural network should give an output of 1. 

This basically means that the neural network has two inputs 

(one for each coordinate) and one output. The coordinates 

are passed in cm in order to speed up the network. The 

network represents a conventional three-layered curve 

fitting neural network. It has 4 neurons in the hidden layer. 

The activation functions for the neurons in the hidden layers 

are sigmoid, while the activation function of the neuron in 

the output layer is linear. Training algorithm used is a 

standard Backpropagation algorithm. To obtain satisfying 

training results with a reasonable data set, the algorithm 

needed up to 1000 training epochs. Many times, the 

algorithm finished even before the 400. training epoch.  

G. Obtaining workspace information data 

After we have defined the robot motion control algorithm 

along with the position calculation, workspace information 

data needed to be formatted in a way that is suitable for 

neural network training. Because the neural network has two 

inputs and one output, one training data sample contained 

three parameters. For every calculated robot position, the 

sensor readings were used to define the desired output of the 

network. If the sensors weren’t detecting, the output would 

be 0, and in the other case the output would be 1. While 

obtaining the data set there were a couple of important 

issues that need to be resolved. For the network to provide 

good results, the data set should be large enough, without 

any conflicting points. Also, with every new position, 

odometry error increases and in that manner the robot 

movement time should be as minimal as possible. Finally, 

the data set should contain the equal number of points for 

both inside and outside the workspace. The motion control 

algorithm solves the last problem buy guiding the robot to 

move along the edge. The solution to the first two problems 

we found in adding “fake” points. The added points were 

“fake” because the robot didn’t necessarily pass through 

them, but we can predict whether they are inside or outside 

the workspace. If the robot is inside the workspace, and we 

draw a line between its position and the coordinate center, 

we can claim that all the points on that line between the 

robot’s position and the coordinate center are inside the 

workspace. So, we take 5 equidistant points on that line and 

add them as “fake”. In that manner, it the robot is on the 

workspace boundary, and we draw a line between its 

position and the coordinate center, we can claim that all the 

points on that line further from the robot’s position are 

outside the workspace. We also take 5 equidistant points on 

that line and add them as “fake”. This is only possible if the 

mapped workspace is represented with a convex figure. 

After, a large enough data set has been obtained, a function 

that removes duplicate points and resolves conflicted points 

is executed. Duplicate points appear when robot passes 

through the same point more than one time. Conflicted 



 

points appear on the boundary of the workspace due to 

positioning error. A point can in one case be interpreted as 

inside and in the other as outside the workspace. In this case, 

the function removes the point that is declared as inside in 

order to enlarge the boundary data points set. 

III. TEST RESULTS 

The robot was tested for mapping a rectangular table with 

the dimensions of 70cm x 50 cm. To achieve good results, 

the network required 2000 points inside the workspace and 

1200 point outside the workspace. This data set includes the 

“fake” points with duplicates and conflicted points. After 

removing the duplicates and conflicted points, the data set 

was decreased to 1959 points in total. The mean-square 

error of the training was 0.043 after 1000 training epochs. 

Another way of calculating the error is in the number of 

outputs that differ from the desired output by a certain 

margin. If we set that margin to be 0.49, the number of false 

outputs is 121, which represents 6.18 % of the training data 

set. The training of the neural network lasts a couple of 

seconds depending on the data set. This is why the neural 

network training must be done after the robot has stopped 

moving. 

 

 
Fig. 4. Training data set for points inside the workspace, including “fake” 

points. 

 

 
Fig. 5. Training data set for points outside the workspace, including “fake” 

points. 

 
Fig. 6. Neural network output for points in the range of -50 cm to 50 cm. 

Blue points indicate points inside the workspace. 

 

The results show that the neural network successfully 

determined the size and shape of the tested workspace. The 

output of the neural network is rounded before plotting on 

this figure in order to have a clear separation of the points 

inside and outside the workspace. The real output suggests 

the probability of a point being inside the workspace, and 

with that kind of data, better mapping of the workspace can 

be done. A workspace map of this kind can now be easily 

used for a robot motion control algorithm that ensures that 

the robot never gets near the boundary of the workspace. 

IV. CONCLUSION 

Analyzing the results we can come to a conclusion that it 

is possible to use neural networks for workspace mapping. 

However, because of the large amount of time that is needed 

to train the neural network, it seems that it would be more 

applicable if the robot only obtains the data. That data can 

then be forwarded to a more powerful computer that would 

calculate the map and send it to the robot. Because of the 

limited computing power, the simplest network architecture 

was chosen for this robot, and this needs to be upgraded to 

achieve better results for various workspace configurations. 

For further work we plan to change the architecture of the 

neural network and the data acquisition algorithm in order to 

be able to map nonconvex workspaces as well. The 

localization based on odometry showed that even with a 

constantly increasing error, useful information can be 

obtained from it. However, on a larger scale, where the 

workspace size can be a couple of times larger than this one, 

this kind of localization would have unacceptable errors. 

Therefore, for the next development, an absolute 

localization system should be selected, e.g. a camera based 

system. 
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