
  

 
Abstract- It is well known that the PID controllers  are used in 

the most of industry applications (in more than 95% cases 
according to relevant reports and analyses). Further, it is a fact that 
these controllers are rarely without integral action. Also, Internal 
Model Control (IMC) based designs are well recognized and 
accepted inside control community thanks to their stability and 
performance robustness.  Having in mind nonlinear and slowly 
varying dynamics of the industrial processes, in this paper we 
propose an Adaptive Internal Model-based Neural Controller with 
embedded Integral action (AIMNCI).  The internal model of the 
controlled plant is implemented by the Fast Clustered Radial 
Basis Function Network (FCRBFN), which is equipped with 
the Stochastic Gradient Descent (SGD) learning algorithm. Some 
illustrations and performance comparison   between the proposed 
AIMNCI controller and others are given by two examples.  
 

Index Terms— adaptive control, neural networks, nonlinear 
internal model control, process control, zero steady-state error. 

I. INTRODUCTION 
THE design of controllers based on the Internal Model 

Control (IMC) structure has been accepted as a well 
established approach not only in the cases of the linear system 
models [1], [2], [3], but also in nonlinear system control. 
Moreover, the design of the classical PID controllers is often 
based on this design approach thanks to its advantages 
concerning stability, robustness and accuracy in the steady-
state [1], [4]. In terms of stability, one has to undertake some 
precautions, because it is assumed in the IMC structure that 
the plant model is stable. If the plant is not stable, then some 
kind of the PD controller in a local loop with the plant 
provides needed stability. In general, application of a PD 
controller in the local loop with the controlled plant in most of 
the cases improves overall dynamical behavior of that part of 
the feedback system. Unfortunately, this is not truth for the 
system accuracy. This means that system cannot eliminate  the 
steady-state error in the case of constant reference and 
constant disturbances, especially when the controlled plant 
possesses larger nonlinearity, e.g. a plant with hysteresis. In 
the IMC control structure the pre-trained Neural Networks 
(NNs) are used to implement  the  nonlinear  time  invariant  
plant model [3],[5], and [6]. Further, the Fast Clustered 
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Radial Basis Function Network (FCRBFN) [7] has been 
suggested for the implementation of the model of slowly 
varying  plants [8].  Thus, design of the control system in the 
case of nonlinear dynamic plant requires, particular attention 
regarding the choice of the Q controller in the IMC system 
structure [1]. The Q controller should essentially provide the 
inverse of the plant model. If the Q controller static gain is 
equal to the inverse of its internal model static gain, and it 
provides stability of the overall system, then offset-free 
control is obtained for constant reference and output 
disturbances [3]. A simple way for an adjustment of the 
controller static gain was given in [8], but some problems have 
been noticed  in the cases of strong model nonlinearity and 
very slow nonlinear process dynamics [9]. The  Approximate  
Internal Model-based Neural Control (AIMNC) was proposed 
for unknown nonlinear discrete time processes [6], in order to 
achieve zero steady state error, in the presence of a constant 
disturbances and the possible mismatch between   a real   plant   
and   its  NN  model. In the proposed AIMNC algorithm the 
NN model has been trained off line, i.e. at implementation it 
has a fixed architecture and parameters. Although, if complex 
enough  the NN architecture provides good accuracy of the 
plant model. At the same time,  it does not mean good 
approximation of its first derivative. The derivative is needed 
for calculation of the control increment in the AIMNC 
algorithm.  

An elegant approach to obtain offset-free control of the 
linear system, in the case of constant reference and constant 
disturbance acting on the system output, is introduction of an 
integral action into control law [4]. Having this in mind, and 
the fact that the FCRBFN equipped with the SGD learning 
algorithm shows very good approximation capabilities in the 
estimation of slowly varying nonlinear processes, in this paper  
we incorporate integral term into the IMC control structure.  
The fact that dynamics of the controlled process can be slowly 
varying implies that NNs used in control algorithms should 
have at least some variable parameters, which can be tuned in 
real time. An essential part of adaptive control system is the 
parameter estimation algorithm that must have rapid 
convergence. It is well known that such characteristics have 
algorithms based on the Least Mean Squares (LMS) 
performance criterion, i.e. some variants of the Recursive 
LMS (RLMS) or the SGD algorithms. Thus, they are very 
suited for adaptive control system designs [10].  

The proposed AIMNCI controller design is based on the 
FCRBFN and an estimation provided with the SGD learning 
algorithm of the Nonlinear Autoregressive Moving Average 
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with eXogenous input (NARMAX) model of the controlled 
process inside the IMC system structure with embedded 
integral action.  

The rest of the paper is organized as follows. In the Section II, 
the plant modeling, i.e. the NN plant model and the SGD 
learning algorithm with a momentum term is outlined. In the 
Section III we explain how to incorporate an integral action 
into the IMC structure and propose the fully adaptive neural 
controller design based on that structure. Simulation results 
demonstrating performance of the proposed AIMNCI algorithm 
are presented in the Section IV. In the Section V we give 
conclusions of the work. 

II. AN ADAPTIVE ESTIMATION ALGORITHM 

A. The plant modeling 
As a starting point we have assumed the following 

NARMAX model of the controlled plant 
 
 ݇)ݕ + 1) = ,࢟)݂ (࢛ + ݀(݇ + 1), 
 
where f  stands for a nonlinear function, ࢟ = ,(݇)ݕ] ݇)ݕ −
1), … , ݇)ݕ − ݊ + 1)]் ࢛ ,	 = ,(݇)ݑ] ݇)ݑ − 1), … , ݇)ݑ −݉ +
1)]் , where ݕ(݇) and ݑ(݇)represent samples, at the discrete 
time instant k, of the plant output and input, respectively,  n 
denotes length of the vector ࢟, m  denotes length of the vector 
 and d(k) represents an effect of the slowly varying ,࢛
disturbances to the plant. Also, that effect could be 
consequence of a constant disturbances at the input or output 
of the plant, in the case of a stable plant model, and/or 
possible modeling errors. The NNs in control system 
applications are used to estimate model (1) based on  available 
input and output	data. In most cases of so called “neuro” 
control algorithms, some kind of the preceding NN training 
has been required [11], [12], [13], [14].. Further on, we 
consider an algorithm by which the identification and control 
are carried out in real time, simultaneously.  
As we know from adaptive control systems based on linear 
models, the identification part of the adaptive control 
algorithms must have fast convergence [10].  It has been 
demonstrated through many examples that the used SGD 
algorithm  with  momentum  parameter  exhibits  very  good  
performance [8], [9], [15]. It is also worth  mentioning that 
this is achieved partially due to the appropriate NN 
architecture, i.e. the FCRBFN in our case. 
  

B. An adaptive estimation algorithm based on the FCRBFN 
    For the sake of completeness and easier tracking of the 
results outlined below, we shall give here only the basic terms 
relating to the on-line estimation algorithm. The FCRBFN is 
used as an internal plant model [7], [8], [9], whose output is a 
prediction of the plant given by (1) at sample instant k+1  
 
 ݇)ොݕ + 1) = ,ࢉ,࢞)ࢶ்ࢃ ,(࣌ 



where  ࢞ = ்࢟] ,  is the input vector to the network, c and ்[்࢛
 are the vectors of centers and spreads of activation functions ࣌
of neurons in the hidden layer, respectively, ࢶ is the vector 
composed of activations of hidden layer neurons and W is the 
weight vector of connections between hidden layer neurons of 
the  FCRBFN model and its output. Activation function of 
neurons in the hidden layer of the FCRBFN is Gaussian 
function 
 

 (ݔ)߮ = ݁ି
(ೣష೎ೣ)మ

഑ೣ  
 
where ܿ௫ denotes center and ߪ௫ denotes spread of the 
activation function. 
 Hidden layer neurons of the FCRBFN are clustered 
according to its inputs, which implies that  total number of 
clusters is equal to ݊ + ݉. The ranges of the possible values of 
each FCRBFN input are known in advance and it is given as 
 
 ௫ݎݓ = max(ݔ) − min(ݔ) 
 
where ݔ is substituted by y and u, respectively. Therefore, it is 
necessary to decide about their range expansions ݁௫ (usually 
expressed in percents), as well as, to decide on the number of 
neurons ݊௖௬ in each of ݊ clusters related to each of the plant 
output values ݕ(݇), ݇)ݕ − 1), … , ݇)ݕ − ݊ + 1)	used as the 
first n network inputs, and the number of neurons ݊௖௨ in each 
of ݉ clusters related to each of the plant input values 
,(݇)ݑ ݇)ݑ − 1), … , ݇)ݑ −݉ + 1) used as the next ݉ network 
inputs. Choice of other parameters and distribution of 
activation functions within neuron clusters in the FCRBFN 
have been discussed in [7], [15].    
Total number of neurons in hidden layer is equal to 
 
 cucytn nmnnn   

 
Performance criterion of the adaptive estimation algorithm 
defined as a square of the model output estimation error  
 
(݇)ߝ = ݇)ݕ + 1) − ݇)ොݕ + 1) = ݇)ݕ + 1) ,࢞)ࢶ்ࢃ− ,ࢉ ,(࣌


is given by 

 (݇)ܬ = ଵ

ଶ
ଶ((݇)ߝ) 

 
To adapt weights of the FCRBFN , according to the basic 
SGD algorithm, an increment of the weight vector should be 

 (݇)ࢃ∆ = (݇)ܬ∇ߟ− = ,࢞)ࢶߟ ,ࢉ ,(݇)ߝ(࣌ 

where  ߟ denotes the learning rate parameter. 








  




Figure 1.  The classical control structure with integral controller 





Figure 2.  An equivalent of the classical control structure from Fig.1   

 

Figure 3.  The proposed  control structure for the adaptive neuro control 

 
Within the analysis based on Taylor series expansion of the 
vector function ࢞)ࢶ + ,࢞ࢤ ,ࢉ  we have shown that in order ,(࣌
to assure convergence of the algorithm, the learning rate 
parameter should be chosen according to [15] 
 
 ߟ < ଶ

௡௡೎೤ା௠௡೎ೠ
 

 
In order to improve performance of the plant model 

estimation in the cases where the noises and outliers are 
present in data, we apply the SGD algorithm with the 
momentum term given by 
 
 (݇)ࢃ∆ = ݇)ࢃ∆ߙ − 1) + (݇)ࢿࢶߟ 
 
where 0) ߙ < ߙ < 1) determines a filtering characteristic of 
the algorithm, and it should be appropriately chosen. 

III. A NEURO ADAPTIVE IMC CONTROLLER   

A. Embedding integral action into IMC structure  
Taking into account the fact that PID control is the ubiquitous 
controller applied in industry [4], and that integral action is 
almost unavoidable in it, we start our consideration in this 
section by classical control structure shown in Fig.1. In the 
case of stable process given by transfer funcion P(z), with 
appropriate choice of parameters K1 and αc this control 
structure provides offset-free control for constant reference 
signal  r  and disturbance d , if the DC gain of the set point 
filter is ܵ(1) = 1.  On the other hand, an equivalent block 
diagram of that in Fig.1 is shown in Fig.2. Finally, assuming 
that instead of true plant model P,  on our disposal is only its 
approximation ෨ܲ  we obtain the control structure shown in the 
Fig.3.  

Industrial processes are characterised by unmeasured 
disturbances,  nonlinear dynamics, resolution and sensitivity 
limits, valve nonlinearities, and time varying process 
parameters. Therefore, it is needed to undertake appropriate 
control action to cope with such complex circumstances. In 
that sense we propose the control structure shown in the Fig.3 
as one of possible approach to resolve these complex control 
problems. Wthin this control structure the FCRBFN equipped 
with the SGD learning algorithm (10) is used to implement the 
internal model of the plant ෨ܲ.  
 

B. The adaptive neuro control design 

According to the control structure in the Fig.3 the control 
signal follows 
 
 (݇)ݑ = ݇)ݑ − 1) + ఈ೎௬∗(௞)ି௬(௞)

௄భ
− (ఈ೎ିଵ)௬ො(௞)

௄భ
 

 
Here is ݕ∗(݇) =  It is clear from (11) that .(݇)ݎ(ݍ)ܵ
implementation of the proposed control algorithm requires 
only one FCRBFN. 
Value of the parameter ߙ௖ (0 < ௖ߙ < 1) can be tuned 
according to stability analysis of the linearised  plant model 
[6] and K1 is set as an upper bound of the static gain of the 
control plant in its operating range.  
Implementing control law defined by (11) using the FCRBFN 
with the on-line tuning of its weight vector given by (10) we 
obtained the AIMNCI controller. 
Remark 1. It should be noted that in [6]  value of K1 ,the first 
derivative of the NN output with respect to control input, has 
been calculated on the base of the pre-trained NN plant model. 
Accuracy of calculation, mentioned in Sec. I, as well as 
changing plant dynamics  has more deteriorating effect on the 
value of K1  than on approximation of the plant model.   
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IV. ILLUSTRATIVE EXAMPLES AND PERFORMANCE 
COMPARISON 

       
In the next examples taken from [4] (Ch.17, Data-Driven PID 
Controller, written by T. Yamamoto) we illustrate 
performance of the  adaptive neural controllers proposed in 
this paper.   
Example 1: The true plant is given by the following 
Hammestein models 
System 1 
 

),(5.0)(5.1)(5.1)(
),()(

)2(1.0)1(2.1)2(1.0)1(6.0)(

32 kukukukx
kkd

kxkxkykyky






                        

(12) 
  
System 2 
 

),(0.1)(0.1)(0.1)(
),()(

)2(1.0)1(2.1)2(1.0)1(6.0)(

32 kukukukx
kkd

kxkxkykyky






  

(13) 
where compareing to the example in [4], a disturbance term 
d(k) is added. 
The variable static gains corresponding to control signal u of 
System 2 are larger than those of System 1 at u>0.6 [4]. 
We considered the case where the true plant model changes 
from (12) to (13) at k=70, when the white Gaussian noise ξ(k) 
with zero mean and a variance 0.012 and disturbance d(k) as 
shown on Fig.4 were present. With a fixed PID controller with 
parameters: KP=0.486, KI=0.227, KD=0.122, TS=1.0, [4]   the 
control performance becomes oscillatory after k=100  for the 
changes of the reference signal as shown on the Fig.4. 
On the other hand, when we have applied the proposed 
AIMNCI algorithm to the same plant model as it is described 
above, the obtained control performance are shown on the 
Fig.4 and Fig.5. Corresponding parameters of the used 
FCRBFN have been as follow:	݊ = 2, ݊௖௬ = 2, 	max y = 2.5,
min y = 0, 	݁௬ = 0.5, ௬ݎݏ	 = 1, 	݉ = 2, ݊௖௨ = 2, 	max u = 2.5,
min u = 0, 	݁௨ = 0.5, ௨ݎݏ	 = 1, and the total number of 
weight parameters was equal to 9, because we applied here the 
method "one in the data vector" [10]. Also parameters of the 
SGD learning algorithm with the momentum term were fixed 
at: ߟ = 0.08, ߙ = 0.3. 

The values of the other parameters of the  AIMNCI 
algorithm were:  ߙ௖ = 0.5 and K1 =5.  The set point filter S 
was as follows 
 
 S(ିݖଵ) = ଴.଻ସ଻ଷ௭షమ

ଵି଴.ଶ଻ଵ௭షభା଴.଴ଵ଼ଷ௭షమ
. 

 
As it can be seen from the Fig.4 and Fig.5. we obtained the 
satisfactory performance of the proposed neuro adaptive 
control design and very similar results  as with the Data-

Driven PID Controller (DD-PID) [4], but with simpler and 
less demanding computation in the AIMNCI algorithm. 
 
Remark 2 The DD-PID design was proposed as one approach 
to reduce the large computational cost at using NNs and  GAs 
in the control applications of the nonlinear processes. 
Nevertheless, the DD-PID requries some clustering and 
removing the redudant data. Additionally, it is well known that 
in some switching control schemes from one to the other 
linear controllers instability can arise. In this regard, the DD-
PID controller has a disadvantage compared to the AIMCNI 
that continually adapts its parameters. 

 
 

Figure 4. The  reference and  output in the adaptive system with the AIMNCI 
algorithm (Ex.1) 

Example 2: In this example another type of nonlinear plant 
model was tested [4], [11]. In this model the following 
equation applies 
 
(݇)ݕ = ௬(௞)௬(௞ିଵ)[௬(௞)ାଶ.ହ]

ଵା௬మ(௞)ା௬మ(௞ିଵ)
+  (16)                                     (݇)ݑ

 
In this model, there is a kind of hysteresis appearing between 
y=0 and y=2.5. Thus, the reference signal was chosen in order 
to illustrate behavior of the adaptive system with the AIMNCI 
algorithm in the case of this type of nonlinearity. 
The reference model,set point filter, for overall dynamics of 
the control system with the structure shown on Fig.3 was 
given as in the Example 1 (15). 
In this example, parameters of the used FCRBFN have been as 
follow:	݊ = 2, ݊௖௬ = 2, 	max y = 2.5, min y = −1.0, 	݁௬ =
0.5, ௬ݎݏ	 = 1, 	݉ = 1, ݊௖௨ = 2, 	max u = 0.3, min u = −1.5,
	݁௨ = 0.5, ௨ݎݏ	݀݊ܽ	 = 1.		 The learning rate and momentum 
term parameter of the SGD learning algorithm were fixed at: 
ߟ = 0.05, ߙ = 0.3, respectively. 
Also, the other parameters of the AIMNCI algorithm used in 
this example were:  ߙ௖ = 0.3 and K1 =1. 
The plant output and control signal for the given changes of 
the reference are shown on the Fig.6 and Fig.7, respectively. It 
is seen from these figures that we obtained the satisfactory 



  

results in spite of the strong nonlinearity within controlled 
plant. Control performance is comparable with that obtained 
using the DD-PID Controller. 
 From Figs.6, 7 we can notice the particular changes in the 
control signal and output during a transient of the reference 
from 2.5 to -1. This transient corresponds to the upper part of 
the hysteresis nonlinearity within plant dynamics (16). At the 
same time, the internal model of the plant implemented by the 
FCRBFN changes in such way to reduce the output prediction 
error to zero. This is illustrated by the Fig.8, where the 
changes of the FCRBFN weight parameters are shown.  

 
Figure 5. Control signal in the adaptive system with the AIMNCI algorithm 

(Ex. 1) 

 

 
Figure 6. The  reference and output in the adaptive system with the AIMNCI 

algorithm (Ex. 2) 

 

Figure 7. Control signal in the adaptive system with the AIMNCI algorithm 
(Ex. 2) 

 
Figure 8. Weight parameters W in the adaptive system with the AIMNCI 

algorithm (Ex. 2) 
 

IV. CONCLUSION 
 

Starting from the classical control structure with an integral 
controller through the equivalent block diagram manipulation 
we came up to the IMC structure with embedded integral 
action. Based on this control structure and the on-line plant 
model estimation using the FCRBFN equipped with the SGD 
learning algorithm, in this paper we proposed the adaptive NN 
controller design (AIMCNI). Control performance using the 
proposed AIMCNI controller is illustrated by two examples of 
the nonlinear controlled plants with variable and strong 
nonlinear dynamics. In the first example we have 
demonstrated the robustness of the AIMCNI controller in the 
case of the strong changes of the nonlinear plant dynamics and 
step changes of the output disturbance. By the second example 
we have shown that using the proposed control algorithm the 
satisfactory results were obtained in spite of the strong 
nonlinearity within control plant which cannot be controlled 



  

by application of classical control algorithms otherwise.  
Simulation results confirm the validity of the proposed design 
algorithm in the control applications of the nonlinear and 
variable industrial processes.  
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