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Abstract—This paper presents a comparison of most fre-
quently used criteria for optimizing distributed order PID
and fractional PID controllers. The problem of interest is
how to provide load disturbance rejection under constraints to
performance and robustness. The comparison of optimal con-
trollers via different optimization criteria has been performed
for different non-integer processes. The optimal controllers are
obtained via optimization by genetic algorithm.

I. INTRODUCTION

PID controllers have been very popular among engineers
and scientist, [1], [2]. Their popularity became significant
due to their simplicity, small number of parameters to be
tuned and the fact that it is not necessary to know the exact
model of process in order to properly tune the controller. The
development in the field of fractional calculus introduced a
new PID-like structures that have proved themselves in dif-
ferent aspects [3], [4], [5]. These PID modifications introduce
complexity in the controller’s structure, but in the same way
improve robustness in comparison with performance or vice
versa. In order to tune an optimal controller some aspects
must be taken into account. System in demand must con-
form itself to the constraints on robustness and performance
as well to stay stable. These aspects of performance and
robustness can be various and in this paper only the most
commonly used will be presented.

The most usual problems for which the controllers are
tuned are the reference tracking or disturbance rejection.
The frequently considered system is given in Fig. 1. This
paper treats the problem of finding an optimal controller for
unit step disturbance rejection. The optimal controllers for
different demands on robustness and performance are found
and compared in the sense of response quality.

The paper is organized as follows: Section II gives an
overview of PID-like structures, Section III presents the most
commonly used performance and robustness indices, while
Section IV presents the optimization problems and Section
V shows the optimization results. Last section concludes the
paper.
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Fig. 1. Plant Gp(s) with dPID controller Gc(s). Reference signal is
denoted by r (assumably r=0), load disturbance by d, measurement noise
by n, control signal by u, error signal by e and system output by y.

II. PID-LIKE STRUCTURES

Classical PID controller can be described by different
structures but the most usual is parallel controller which is
defined by the following differential equation as

upid(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
, (1)

where kp, ki, kd represent proportional gain, integral gain,
derivative gain, respectively. e(t) represents error signal,
while upid(t) represents control signal.

The transfer function of the classical PID with noise
cancellation filter is given by

Gpid(s) =
kp + ki

1
s + kds

Tfs+ 1
(2)

where Tf represents filter’s time constant.
Compared to a classical PID controller, FPID has two

additional degrees of freedom – the integration order α
and the differentiation order β. These two newly introduced
degrees of freedom provide more flexibility in applications
but in the same time complicate the controller’s structure.

Gfpid(s) =
kp + ki

1
sα + kds

β

(Tfs+ 1)β
. (3)

By generalization of fractional PID controller, one can ac-
quire a distributed order PID. The distributed order PID
controller with noise cancellation filter is given by

Gdopid(s) =
1

Tfs+ 1

N−1∑
i=0

kis
−1+i∆α . (4)

with ki being the gains of differintegrators and odd integer
N > 1 being the number of differintegrators and a positive
step length calculated as ∆α = 2

N−1
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The more details about the DOPID structure can be found
in [3], [6].

III. PERFORMANCE AND ROBUSTNESS INDICES

Integral of absolute error (IAE) is perhaps the most
frequently used as performance measure, defined as

IAE =

∞∫
0

|e(t)| dt. (5)

One more frequently used performance indexes when
considering PID controllers is Integral of error (IE) and it
is defined as

IE =

∞∫
0

e(t)dt. (6)

There exists a direct dependence between integral gain, ki,
and integral of error (IE) in the case when load disturbance
is constant unit signal [1].

Very often used performance index regarding noise influ-
ence is maximal sensitivity to measurement noise Mn

Mn = max
ω≥0

∣∣∣∣ −Gc(jω)

1 +Gc(jω)Gp(jω)

∣∣∣∣ (7)

as it equals kd

Tf
for classical PID controllers and DOPID

controllers and kd

Tβ
f

for FPID controllers.

If one wants to guarantee robustness to model uncertain-
ties, maximum sensitivity Ms was considered to be less than
a specified value. Ms is given with

Ms = max
ω≥0

∣∣∣∣ 1

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωs

. (8)

The index that constraints the maximum resonant peak is
defined as

Q = max
ω≥0

∣∣∣∣∣ ki
Gp(jω)

jω

1 +Gc(jω)Gp(jω)

∣∣∣∣∣
ω=ωq

. (9)

Šekara and Mataušek showed in [8] that constraining Q to
be less than 1.01 provides acceptable values of IAE.

One more frequently used robustness index, often in com-
bination with Ms is Maximum complementary sensitivity
defined as

Mp = max
ω≥0

∣∣∣∣ Gc(jω)Gp(jω)

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωp

. (10)

Perhaps, one not so conventional performance index is
the maximization of minimum of amplitude characteristic
of controller, of course over complete frequency range, as
it reduces the influence of load disturbance. This can be
described as

MminA = max
ω≥0

(min |Gc(jω)|) . (11)

The last index coincides with maximization of propor-
tional gain kp at classical PID controllers [7].

IV. OPTIMIZATION PROBLEMS

For all optimization problems in this research the issue was
to find an optimal controller FPID and DOPID in order to
reject load disturbance and closed loop system is stable. The
optimization in all cases was performed by particle swarm
optimization algorithm. The processes that were analyzed are
the following non-integer processes

Gp1(s) =
−(1− s) ln(s)

(s+ 1)3
, (12)

Gp2(s) =
−(1− s) ln(s)

(s+ 1)2
. (13)

The following optimization problems were analyzed.

A. Optimization problem 1 (OP1)

This optimization problem is formulated for DOPID con-
troller with N = 7 differintegrators of the form

Gdopid,7(s) =
1

sTf + 1

(
k0

1

s
+ k1

1

s2/3
+ . . .+ k5s

2/3 + k6s

)
.

(14)
The controller is optimized with the following concerns

max
k0,k1,...,k6,ωq,ωs

k3 , (15)

Tf =
kd

Mmax
n

, (16)

Ms =

∣∣∣∣ 1

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωs

≤ Mmax
s , (17)

Q =

∣∣∣∣∣ ki
Gp(jω)

jω

1 +Gc(jω)Gp(jω)

∣∣∣∣∣
ω=ωq

≤ Qmax , (18)

ki ≥ kmin
i , i ∈ {0, ..., N − 1} . (19)

The same was observed for FPID controller, so the only
difference in this case is in the first equation, i.e. in the
controller structure.

B. Optimization problem 2 (OP2)

This optimization problem is formulated for DOPID con-
troller of the same structure as for optimization problem 1.

max
k0,k1,...,k6,ωq,ωs

k0 , (20)

The controller is optimized with the following concerns

Tf =
kd

Mmax
n

, (21)

Ms =

∣∣∣∣ 1

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωs

≤ Mmax
s , (22)

Q =

∣∣∣∣∣ ki
Gp(jω)

jω

1 +Gc(jω)Gp(jω)

∣∣∣∣∣
ω=ωq

≤ Qmax , (23)

ki ≥ kmin
i , i ∈ {0, ..., N − 1} . (24)

The same was observed for FPID controller, so the only
difference in this case is in the first equation, i.e. in the
controller structure.



C. Optimization problem 3 (OP3)

This optimization problem is formulated for DOPID con-
troller of the same structure as for optimization problem 1.

max
k0,k1,...,k6,ωq,ωs

k0 , (25)

The controller is optimized with the following concerns

Tf =
kd

Mmax
n

, (26)

Ms =

∣∣∣∣ 1

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωs

≤ Mmax
s , (27)

Mp = max
ω≥0

∣∣∣∣ Gc(jω)Gp(jω)

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωp

≤ Mmax
p , (28)

ki ≥ kmin
i , i ∈ {0, ..., N − 1} . (29)

The same was observed for FPID controller, so the only
difference in this case is in the first equation, i.e. in the
controller structure.

D. Optimization problem 4 (OP4)

This optimization problem is formulated for DOPID con-
troller of the same structure as for optimization problem 1.

The controller is optimized with the following concerns

max
k0,k1,...,k6,ωq,ωs

k3 , (30)

Tf =
kd

Mmax
n

, (31)

Ms =

∣∣∣∣ 1

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωs

≤ Mmax
s , (32)

Q =

∣∣∣∣∣ ki
Gp(jω)

jω

1 +Gc(jω)Gp(jω)

∣∣∣∣∣
ω=ωq

≤ Qmax , (33)

Mp = max
ω≥0

∣∣∣∣ Gc(jω)Gp(jω)

1 +Gc(jω)Gp(jω)

∣∣∣∣
ω=ωp

≤ Mmax
p , (34)

ki ≥ kmin
i , i ∈ {0, ..., N − 1} . (35)

This optimization problem has one more constraint com-
pared to all other optimization problems considered so far.
For this problem it was impossible to find neither optimal
FPID nor classical PID controller.
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Fig. 2. Optimization problem 1: Response and control signal on unit step
load disturbance d(t) for process Gp1 on the left and response and control
signal for process Gp2 on the right controlled by FPID and DOPID under
constraints Mmax

s = 2, Mmax
n = 20 and Qmax = 1.01.

0 50 100

Time[s]

0

0.5

1

1.5

R
es

po
ns

e
Gp1 - Response

DOPID
FPID

0 50 100

Time[s]

-0.5

0

0.5

1

1.5

R
es

po
ns

e

Gp2 - Response

DOPID
FPID

0 50 100

Time[s]

-1

-0.5

0

C
on

tr
ol

Gp1 - Control

DOPID

FPID

0 50 100

Time[s]

-1

-0.5

0
C

on
tr

ol

Gp2 - Control

DOPID

FPID

Fig. 3. Optimization problem 2: Response and control signal on unit step
load disturbance d(t) for process Gp1 on the left and response and control
signal for process Gp2 on the right controlled by FPID and DOPID under
constraints Mmax

s = 2, Mmax
n = 20 and Qmax = 1.01.
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Fig. 4. Optimization problem 3: Response and control signal on unit step
load disturbance d(t) for process Gp1 on the left and response and control
signal for process Gp2 on the right controlled by FPID and DOPID under
constraints Mmax

s = 2, Mmax
n = 20 and Mmax

p = 1.3.
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Fig. 5. Optimization problem 4: Responses on unit step load disturbance
d(t) for processes Gp1 and Gp2 above and control signals for processes
Gp1 and Gp2 on bottom, for optimal DOPID controller under constraints
Mmax

s = 2, Mmax
n = 20 and Mmax

p = 1.3.



TABLE I
OPTIMAL PARAMETERS OF FPID AND DOPID CONTROLLER FOR PROCESSES Gp1, Gp2 FOR CONSTRAINTS VALUES Mmax

n = 20, Mmax
s = 2,

Mmax
p = 1.3 AND Qmax = 1.01 FOR OPTIMIZATION PROBLEMS 1, 2, 3; RESULTS FOR FPID CONTROLLER ARE MARKED WITH *.

OP Proc. k0/ki k1/α k2/β k3/kp k4 k5 k6/kd Tf IAE Mp / Q

OP1 Gp1 4.96e-2 -2.15e-3 2.53e-2 0.317 -3.58e-2 4.81e-3 6.22e-1 3.11e-2 22.33 1.06
OP1 Gp1∗ 3.68e-2 1 1 0.378 / / 4.85e-1 1.89e-2 29.37 1.03
OP1 Gp2 8.19e-2 7.09e-3 4.14e-3 0.361 1.23e-2 7.35e-4 2.74e-1 1.37e-2 14.48 1.13
OP1 Gp2∗ 1.66e-2 1 0.94 0.256 / / 3.56e-2 1.34e-2 64.87 1.04

OP2 Gp1 6.14e-2 7.90e-3 4.23e-2 2.19e-1 2.15e-2 -5.74e-4 6.66e-01 3.33e-2 19.61 1.16
OP2 Gp1∗ 4.05e-2 1 1 3.84e-1 / / 2.8e-1 1.39e-2 26.78 1.06
OP2 Gp2 7.04e-2 2.65e-1 -7.65e-1 1.26 -5.11e-1 4.42e-4 5.00e-01 2.5e-2 18.32 1.42
OP2 Gp2∗ 4.50e-2 1 1 3.79e1 / / 1.71e-1 8.53e-3 24.70 1.03

OP3 Gp1 3.82e-2 -8.86e-2 5.91e-2 3.53e-1 -4.08e-1 -6.20e-1 4.65e-1 2.32e-2 78.12 2.47
OP3 Gp1∗ 9e-2 1 1 3.86e-1 / / 4.85e-1 2.42e-2 15.37 1.16
OP3 Gp2 7.27e-2 2.24e-1 -7.49e-1 1.32 -4.93e-1 -6.80e-2 5.13e-1 2.57e-2 18.42 1.05
OP3 Gp2∗ 1.05e-1 1 1 3.76e-1 / / 2.88e-1 1.44e-2 13.48 1.13

V. RESULTS

Table I shows the optimal parameters of all controllers for
all optimization problems considered in this paper as well
as the values of indices of interest. Figs. 2, 3, 4 show the
responses and control signals for all optimization problems
for all considered processes. Fig. 5 shows the results of
response and control signals for optimal DOPID controllers
for both observed processes.

It can be seen that for most cases it is obvious to consider
optimal DOPID instead of optimal FPID controller as one
obtains either less fluctuating, either faster response. Fo
optimization problem 4 that includes more constraints it is
only possible to find optimal DOPID controller.

VI. CONCLUSION

This paper shows the comparison of optimal DOPID and
FPID controllers for different optimization problems. It is
shown that there are benefits of using DOPID controller for
most cases with regular number of constraints. For the case
for larger number of constraints it is only possible to find
optimal DOPID controller.
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tion of distributed order fractional PID controller under constraints on
robustness and sensitivity to measurement noise", Fractional Differen-
tiation and Its Applications (ICFDA), 2014 International Conference
on, (Catania, Italy, 2014. )
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ABSTRACT

This paper presents a comparison of most frequently used criteria
for optimizing distributed order PID and fractional PID controllers.
The problem of interest is how to provide load disturbance rejection
under constraints to performance and robustness. The comparison of
optimal controllers via different optimization criteria has been per-
formed for different non-integer processes. The optimal controllers
are obtained via optimization by genetic algorithm.
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