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Abstract—In this paper problem of distributed multi-target
tracking in large scale camera networks is discussed and a
new algorithm based on consensus is proposed. The considered
networks are characterized by sparse communication and cov-
erage topologies, as well as the presence of clutter and multiple
targets, which make the application of distributed frameworks
challenging. The proposed algorithm uses Joint Probabilistic Data
Associations (JPDA) methodology to address the clutter and
multi-target problem. It applies a novel multi-step consensus
strategy which adapts network communication weights to reflect
differences between the nodes caused by the adopted network
setting. Compared to the existing state of the art algorithms,
in spite of having reduced communication requirements, the
proposed scheme achieves the same performance quality in terms
of the mean estimation error and much better performance in
terms of the disagreement between the nodes’ estimates due to
its specific consensus design.

Index Terms—Camera networks, Distributed multi-target
tracking, Multi-step consensus, Decentralized adaptation.

I. INTRODUCTION

Development of high performance imaging sensors, together
with the increased availability of low-cost cameras in recent
years, have potentiated research connected to the application
large scale camera networks, such as wide-area surveillance,
disaster response, environmental monitoring, etc. One of the
problems that have been in focus of researchers is target track-
ing using such networks, see e.g. [1]. Distributed schemes are
becoming increasingly popular due to their high fault tolerance
and scalability to a large number of sensors. Distributed multi-
target tracking using sensor networks assumes that each sensor
communicates and exchanges information with a subset of all
nodes (neighboring nodes) in order to estimate and track the
states of all the targets.

The fact that cameras have limited sensing range, implying
that at each time instant there might be a significant share
of sensors that do not receive measurements from the targets,
makes that most well-known distributed estimation algorithms
perform poorly in this situation. In addition, many state of
the arts algorithms adopt the setting from the radar tracking
community which takes into account the fact that at each time
instant the measurements can originate from sources other than
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target (clutter). This uncertainty in the origin of measurements
can be solved using different methodologies, but the most
common is probabilistic data association (PDA) [2], together
with its extended version that is better suited for the multi-
target tracking problem - joint probabilistic data association
(JPDA) [3].

The popular distributed tracking algorithm is Kalman-
Consensus Filter (KCF), proposed in [4] by introducing a
single-step consensus scheme whose dynamics is coupled
with the estimation process of the target state. At each
time iteration, it assumes that the nodes exchange the so-
called information vectors and matrices (depending on local
measurements, output matrices and measurement covariances),
together with the target state estimates. Further extension
of this approach towards its application in sensor networks
with limited sensing range has been made by introducing its
message-passing version in [5]. Distributed multi-target KCF,
proposed in [6], combined PDA with KCF, assuming that
all sensors received target-oriented measurements. Since the
nodes communicate their estimates regarding multiple targets,
[6] also addressed the problem of track to track association,
based on a measure of distance.

Another state of the art algorithm, the so-called information-
weighted consensus algorithm for distributed maximum a
posteriori parameter estimation, and its extension for state
estimation - the Information-weighted Consensus Filter (ICF)
was proposed in [7]. ICF assumes multi-step consensus on
two quantities that are of the same size as information vectors
and matrices. Its version taking into account the presence of
clutter and multiple targets (MTIC) was proposed in [8] by
combining PDA with ICF. It did not consider the problem of
track to track association by assuming perfect track to track
matchings.

In [9] an algorithm for decentralized state estimation has
been proposed in the form of a multi-agent network based on
a combination of local estimators of Kalman filtering type and
a single-step dynamic consensus strategy which is applied after
each estimation step. It assumes the exchange of only infor-
mation on state estimates between the nodes. Its modification,
aimed at dynamically giving more communication weight to
the nodes currently receiving the measurements was proposed
in [10]. It is applied in situations where coverage topology is
sparse, so that at each iteration the algorithm needs to adapt to
the fact that only a small portion of the nodes actually observes
the target. This adaptive algorithm introduced the exchange
of additional zero-one variables between the nodes, reflecting
their observation status (whether they observe the target or no),
which were later used in calculating communication weights
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for the estimates. It outperforms KCF while having smaller
communication bandwidth requirements. The scheme assumes
clutter-free scenarios and single target tracking.

In [11] the scheme from [10] was further refined by
communicating real numbers instead of binaries between the
nodes, reflecting both their current observation status and
their communication history (the nodes previously receiving
information from the observing nodes were given relatively
higher communication weights compared to the nodes pre-
viously receiving information from the non-observing nodes).
The obtained algorithm was generalized in [12] by considering
the problem of single target tracking in cluttered environment.
In scenarios with clutter one can have multiple measurements
while tracking the single target, so using PDA each of these
measurements is connected to the posterior probability that it
originated from a target. Additionally, probability of a zero
event corresponding to the case in which none of the mea-
surements originated from a target is introduced. Obviously,
these probabilities sum up to one. The underlying assumption
in [12] is that when a target is being successfully tracked
nodes that observe it will have probability corresponding
to the target originated measurement close to one and that
probability corresponding to clutter originated measurements
will generally be close to zero. Those nodes that do not receive
any measurements will have probability of zero event equal to
one. In that way, for each node, one can take the probability
of an event that is complement to the zero event as a measure
of the weight that should be given to the node’s target state
estimate in the consensus scheme. The algorithm also included
general setting that extends the PDA approach, based on the
introduction of probabilities of target perceivability and target
existence, in accordance with the Integrated Probabilistic Data
Association (IPDA) methodology [13], aimed at increasing
robustness of the whole scheme in cases of occulted targets. It
outperformed single-step single-target version of MTIC, while
preserving smaller communication requirements.

This paper builds up on the aforementioned results that
started from [9] in two ways: it uses Joint Probabilistic Data
Association (JPDA) methodology in order to appropriately
address the problem of multi-target tracking [3], and it uses a
novel multi-step consensus protocol, in line with the develop-
ments [7], [14], in order to achieve an even better performance
in terms of the estimation error and the disagreement between
the estimates. In multiple target tracking scenarios one deals
with sets of probabilities for each target obtained via JPDA and
with consensus scheme being applied on each of the sets of
target state estimates. Track to track association problem has
not been addressed but the scheme resembling the one from
[6] can be applied in a straightforward way, which represents
a topic for further work. It is to be noticed that this problem
cannot be solved in a similar way when applying the MTIC
algorithm, due to the fact that the nodes do not exchange
actual estimates, so that the question of correspondence of
a distance measure of the estimates to a distance measure of
the quantities being exchanged arises.

It will be shown that the proposed design of a multi-
step communication scheme enables successful network-wide

tracking of all the targets and that the resulting algorithm
achieves the same level of mean estimation error as MTIC, as
well as significantly smaller disagreement between the nodes’
estimates, while having smaller communication requirements.
This is a result of an appropriately designed weighted consen-
sus scheme which provides a faster and more robust algorithm,
in contrast to the average consensus algorithm from MTIC.

The outline of the paper is as follows. Problem setting is
discussed in Section II. The proposed distributed multi-target
tracking algorithm with novel multi-step consensus scheme
design is presented in Section III. Section IV gives illustration
of the proposed consensus scheme together with characteristic
simulation results.

II. PROBLEM DEFINITION

Consider NT dynamic systems (targets models), where the
k-th target, k = 1, . . . , NT , is represented by the following
linear time-invariant discrete-time stochastic model

xk(t+ 1) = Fxk(t) +Gek(t), (1)

where xk ∈ Rm is the target state vector and ek zero-mean
white Gaussian noise with covariance matrix Qk.

Assume that we have N intelligent sensors forming a
network in which each node (camera) is supposed to have,
in general, limited sensing and communication ranges, which
determine at each t the set of nodes that can observe the targets
and the sets of neighboring nodes exchanging messages. It is
assumed that NT is known to each node. At time t, each
node gets mi measurements denoted as zi,j , j = 1, . . . ,mi.
For each measurement, the nodes do not know whether it
originated from target or from clutter. Under the hypothesis
that the measurement zi,j originated from the k-th target, the
sensing model for the i-th node is

zi,j(t) = Hk
i x

k(t) + vki (t), (2)

where zi,j(t) ∈ Rpi is the measurement vector, Hk
i a constant

output matrix and vki zero-mean white Gaussian measurement
noise with covariance matrix Rki .

Let Zi(t) = {zi,1(t), . . . , zi,mi(t)} denote the set of mi(t)
measurements obtained by node i at time t and Zti =
{Zi(1), . . . , Zi(t)}. Let θki,j be the event that the j-th mea-
surement of the i-th node originated from the k-th target, and
θki,0 the event that none of the measurements originated from
the k-th target. The probabilities defined as

βki,j(t) = P{θki,j |Zti}, j = 0, 1, . . . ,mi(t). (3)

represent the core of the targets tracking filters. The well
known PDA (Probabilistic Data Association) approach [2]
computes these probabilities separately for each target k, under
the assumption that all measurements not associated with
target k are false (i.e., they come from clutter). The Joint
Probabilistic Data Association (JPDA) approach [3] computes
these probabilities jointly across all targets and clutter, so that,
for each target, measurements not associated with it may come
from both other targets and clutter.



III. ADAPTIVE CONSENSUS FILTER

A. Tracking Algorithm

For each target k, we use the algorithm [10], which is
obtained from [9] after assuming that all subsystem models are
equal to the target model (1), combined with the methodology
from [2], [3]:

ξki (t|t) = ξki (t|t− 1) + Lki (t)z̃
k
i (t)

ξki (t+ 1|t) = FCk(ξki (t|t)), (4)

i = 1, . . . , N , where ξki is an estimate of xk generated by the
i-th node,

z̃ki (t) =

mi(t)∑
j=1

βki,j(t)z̃
k
i,j(t), (5)

z̃ki,j(t) = zi,j(t)−Hk
i ξ
k
i (t|t−1), Ck(·) is a consensus operator

Ck(ξki (t|t)) =
∑
j∈Ji

ckij(t)ξ
k
j (t|t), (6)

ckij(t), i, j = 1, . . . , N , are time varying weights, such that
N × N matrix Ck(t) = [ckij(t)] (consensus matrix) is row-
stochastic for all t, Ji = Ni ∪ {i}, where Ni is the set of
in-neighbors of the i-th node, e.g., [15], [16], [17], and

Lki (t) = P ki (t|t− 1)(Hk
i )
TSki (t)

−1, (7)

is the local Kalman gain obtained from (1) and (2) according
to [18], using

P ki (t|t) =P ki (t|t− 1) + [βki,0(t)− 1]Lki (t)S
k
i (t)L

k
i (t)

T

+ P̃ ki (t, t),

P̃ ki (t, t) =L
k
i (t)[

mi(t)∑
j=1

βki,j(t)z̃
k
i,j(t)z̃

k
i,j(t)

T

− z̃ki (t)z̃ki (t)T ]Lki (t)T ,
P ki (t+ 1|t) =FP ki (t|t)FT +GQkGT ,

Ski (t) =H
k
i P

k
i (t|t− 1)(Hk

i )
T +Rki . (8)

The algorithm requires the exchange of state estimates only
(size m × 1) between the nodes (compare with [6], [8]). It
contains two parts: 1) the filtering part, in which the local
measurements are processed, and 2) the prediction part, in
which the agreement between the nodes is enforced by forming
a convex combination of the communicated local estimations,
which are then included in the prediction step, e.g., [15], [19],
[16].

B. Multi-step adaptive consensus scheme

The following discussion will omit the target indexes since
the same consensus strategy will be applied for each of the
targets. We shall start from the set of weights

γi(t) = 1− βi,0(t), (9)

i = 1, . . . , N , as in [12]. When a target is being successfully
tracked these weights should be close to one for the nodes
observing the target and close to zero for the nodes that do
not observe the target. Our aim is to design such a communi-
cation scheme that will asymptotically result in all the nodes

having target state estimates equal to the weighted sum of the
initial target state estimates (before the start of the consensus
scheme), with weights corresponding to γi(t)/

∑N
i=1 γi(t).

Consequently, after the communication scheme is applied, all
the nodes will have estimations that are mostly influenced
by the nodes that observe the target. E.g., if only one node
observes the target, all the other nodes will have target state
estimates close to that one node’s estimate; if two nodes
observe the target, all the other nodes will have estimates close
to the mean of the two measuring nodes’ estimates.

To this end, at each time instant t, we shall apply K con-
sensus steps. In each consensus step the nodes exchange the
variables based on γi(t) as well as the target state estimates.
The variables will be used for weighting the communicated
estimates. Let A represents the network adjacency matrix with
its diagonal elements set to 1. Before the consensus scheme
is applied, we shall obtain Ac such that

lim
n→∞

Anc = 11T /N, (10)

where 1 is a vector of ones of appropriate size and Ac
is a consensus matrix based on A which will be used in
communicating weights between the nodes. Such matrix sat-
isfies 1TAc = 1T . It can be shown that this equation has,
in principle, infinitely many solutions, using the procedure
analogous to the one from [20]. Solving requires the knowl-
edge of network topology; it is performed only once for
a fixed topology. It is not a necessary prerequisite for the
success of the whole consensus scheme but allows us to know
the asymptotic behavior of the consensus algorithm. As a
replacement, one can use a matrix with equal elements in each
row summing up to one (see the following section).

Let γ[κ]i (t) and ξ[κ]i (t|t), κ = 1, . . . ,K, be the weight and
the estimate of the i-th node connected to the κ-th consensus
step, respectively. We shall start from

γ
[1]
i (t) = γi(t), ξ

[1]
i (t|t) = ξi(t|t).

In this first consensus step, the nodes exchange γ
[1]
i (t) and

their estimates ξ
[1]
i (t|t). The weights γ

[1]
i (t) are being ex-

changed through Ac, so that the corresponding consensus
matrix that defines the weights for the communicated estimates
is obtained by

C [κ](t) =
(
Ac · diag

(
γ
[κ]
1 (t), . . . , γ

[κ]
N (t)

))
rs
, (11)

κ = 1, where (·)rs denotes an operator making the resulting
matrix row-stochastic - it divides elements of each row of the
argument matrix by the corresponding row sums.

Now that we have the consensus matrix C [κ](t) = [c
[κ]
ij (t)],

i, j = 1, . . . , N , the target state estimates are obtained by

ξ
∗[κ]
i (t|t) =

∑
j∈Ji

c
[κ]
ij (t)ξ

[κ]
i (t|t), (12)

where star denotes the estimates obtained after the consensus
step is applied.

For the next consensus step, our design requires that
the weight of each node corresponds to the sum of



the weights it received previously, so that γ[κ+1](t) =
[γ

[κ+1]
1 (t) · · · γ

[κ+1]
N (t)]T becomes:

γ[κ+1](t) = Ac · diag
(
γ
[κ]
1 (t), . . . , γ

[κ]
N (t)

)
· 1 = Ac · γ[κ](t).

(13)
Also,

ξ
[κ+1]
i (t|t) = ξ

∗[κ]
i (t|t). (14)

At this point one can proceed with (11) and (12) for κ + 1
and likewise repeat the described procedure for the total of K
consensus steps.

It might not be obvious but it is straightforward to show
that this kind of procedure for K → ∞ achieves consensus
equivalent to

lim
K→∞

ξ
∗[K]
i (t|t) =

∑
j∈Ji

c∞ij (t)ξi(t|t), (15)

where

[c∞ij (t)] =


γ1(t)

γ1(t)+···+γN (t) · · · γN (t)
γ1(t)+···+γN (t)

...
. . .

...
γ1(t)

γ1(t)+···+γN (t) · · · γN (t)
γ1(t)+···+γN (t)

 ,
which represents the desired result.

Consensus parameters cij(t) in (6) are obtained by applying
K consensus steps (target mark is omitted):

[cij(t)] = C(t) = C [K](t) · C [K−1](t) · . . . · C [1](t). (16)

IV. EXAMPLES

A. Consensus scheme illustration

As an illustration of the proposed algorithm, let us consider
a sensor network with N = 3 nodes represented by the
following adjacency matrix (diagonal elements are set to 1):

A =

1 1 1
0 1 1
1 0 1

 .
Notice that the underlying communication graph is directed,
rendering the existing consensus based distributed estimation
schemes inapplicable in this situation [4], [5], [7], [14].

First, we shall solve 1TAc = 1T , so that Ac corresponding
to the adjacency matrix A satisfies the asymptotic equation
(10), and obtain:

Ac =

1/2 1/4 1/4
0 3/4 1/4

1/2 0 1/2

 .
Herein, we have chosen a numerically attractive and simple
solution from the set of possible solutions.

It can be easily verified that

lim
n→∞

Anc =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .
At each time iteration of the estimation algorithm, for each

target being tracked, K consensus steps are applied. In the
first consensus step, assuming that we have the weight vector

at a given time for a given target γ[1] = γ =
[
γ1 γ2 γ3

]T
,

our proposed algorithm gives the following consensus matrix:

C [1] =


γ1/2

γ1/2+γ2/4+γ3/4
γ2/4

γ1/2+γ2/4+γ3/4
γ3/4

γ1/2+γ2/4+γ3/4

0 3γ2/4
3γ2/4+γ3/4

γ3/4
3γ2/4+γ3/4

γ1/2
γ1/2+γ3/2

0 γ3/2
γ1/2+γ3/2

.
In the second consensus step, we use the following weight
vector, obtained locally by each node through communication
of the original weight vector γ in the first consensus step via
the communication weights defined in Ac:

γ[2] =

γ
[2]
1

γ
[2]
2

γ
[2]
3

 =

γ1/2 + γ2/4 + γ3/4
3γ2/4 + γ3/4
γ1/2 + γ3/2

 .
The corresponding consensus matrix is C [2] =

γ
[2]
1 /2

γ
[2]
1 /2+γ

[2]
2 /4+γ

[2]
3 /4

γ
[2]
2 /4

γ
[2]
1 /2+γ

[2]
2 /4+γ

[2]
3 /4

γ
[2]
3 /4

γ
[2]
1 /2+γ

[2]
2 /4+γ

[2]
3 /4

0
3γ

[2]
2 /4

3γ
[2]
2 /4+γ

[2]
3 /4

γ
[2]
3 /4

3γ
[2]
2 /4+γ

[2]
3 /4

γ
[2]
1 /2

γ
[2]
1 /2+γ

[2]
3 /2

0
γ
[2]
3 /2

γ
[2]
1 /2+γ

[2]
3 /2

.
By multiplying consensus matrices we obtain that the equiv-
alent consensus matrix for the first two consensus steps is
C [2] · C [1] = 3γ1/8

3γ1/8+5γ2/16+5γ3/16

5γ2/16

3γ1/8+5γ2/16+5γ3/16

5γ3/16

3γ1/8+5γ2/16+5γ3/16

γ1/8

γ1/8+9γ2/16+5γ3/16

9γ2/16

γ1/8+9γ2/16+5γ3/16

5γ3/16

γ1/8+9γ2/16+5γ3/16

γ1/2

γ1/2+γ2/8+3γ3/8

γ2/8

γ1/2+γ2/8+3γ3/8

3γ3/8

γ1/2+γ2/8+3γ3/8

.
On the other side,

A2
c =

3/8 5/16 5/16
1/8 9/16 5/16
1/2 1/8 3/8

 .
It can be seen that the coefficients that multiply the initial
weights in the equivalent consensus matrix are in fact equal
to the corresponding parameters of the power of Ac.

By applying further consensus steps, it is clear that for K
large enough we would obtain C [K] · C [K−1] · . . . · C [1] ≈

γ1/3
γ1/3+γ2/3+γ3/3

γ2/3
γ1/3+γ2/3+γ3/3

γ3/3
γ1/3+γ2/3+γ3/3

γ1/3
γ1/3+γ2/3+γ3/3

γ2/3
γ1/3+γ2/3+γ3/3

γ3/3
γ1/3+γ2/3+γ3/3

γ1/3
γ1/3+γ2/3+γ3/3

γ2/3
γ1/3+γ2/3+γ3/3

γ3/3
γ1/3+γ2/3+γ3/3

 =

 γ1
γ1+γ2+γ3

γ2
γ1+γ2+γ3

γ3
γ1+γ2+γ3

γ1
γ1+γ2+γ3

γ2
γ1+γ2+γ3

γ3
γ1+γ2+γ3

γ1
γ1+γ2+γ3

γ2
γ1+γ2+γ3

γ3
γ1+γ2+γ3

 .
Therefore, by applying our algorithm we have obtained

the desired asymptotic behavior of a communication network
using only locally obtained communication weights.

In order to avoid divide by zero situations in practical
scenarios where in some neighborhoods all nodes have zero
weights, a simple fix can be applied by adding some small
number ε to all γi, i = 1, . . . , N .



If we didn’t solve for Ac that satisfies (10) in the beginning,
but use equal elements in rows summing up to 1:

Ac =

1/3 1/3 1/3
0 1/2 1/2
1/2 0 1/2

, lim
n→∞

Anc =

1/3 2/9 4/9
1/3 2/9 4/9
1/3 2/9 4/9

 ,
we would obtain for K large enough C [K] ·C [K−1] ·. . .·C [1] ≈

γ1/3
γ1/3+2γ2/9+4γ3/9

2γ2/9
γ1/3+2γ2/9+4γ3/9

4γ3/9
γ1/3+2γ2/9+4γ3/9

γ1/3
γ1/3+2γ2/9+4γ3/9

2γ2/9
γ1/3+2γ2/9+4γ3/9

4γ3/9
γ1/3+2γ2/9+4γ3/9

γ1/3
γ1/3+2γ2/9+4γ3/9

2γ2/9
γ1/3+2γ2/9+4γ3/9

4γ3/9
γ1/3+2γ2/9+4γ3/9

 ,
which would still exhibit good results in the distributed
estimation scheme, since in situations where γi ≈ 1 for
measuring nodes and γi ≈ 0 for non-measuring nodes a
clear emphasis is given on the estimates of measuring nodes.
The only difference is in non-equal weights connected to the
estimates in neighborhoods with multiple measuring nodes.

B. Simulations

The considered problem is distributed tracking of NT = 4
targets via a network of N = 15 cameras (sensors, nodes),
each target moving within a 500 × 500 space [7], [8]. The
cameras are randomly distributed in the space with random
orientations resulting in overlapping field-of-views (FOVs).
Communication range is set to 200 units. Targets’ initial posi-
tions are randomly selected within the square area, with initial
speeds set to 2 units per time step with random directions.
The dynamics of all targets is modeled using a constant speed
model with time increment of 1. The process covariance Q is
set to diag(10, 10, 1, 1). Only the targets that remained in the
simulation area after the duration of the experiment (20 time
iterations) were considered. Cameras observe targets positions
according to their FOVs, which are represented by equilateral
triangles with the height of 300 units. Measurement noise
covariances are set to 100I2. The initial prior state estimates
are randomly selected around initial target states with noise
covariance of 5Q. The initial error covariance matrices are
set to diag(100, 100, 10, 10) for all the nodes. Number of
consensus steps is set to K = 10, as in [7], [8]. Regarding the
parameters included in calculating βki,j(t) (see [3] for details),
false measurements (clutter) were assumed Poisson distributed
with the spatial density of 1/32, gate probability was set to
0.99 and probability of detection was calculated individually
for each node at each time instant by integrating the probability
density function of the predicted estimate over the triangular
area visible to the camera.

Fig. 1 illustrates performance of the proposed scheme,
giving position estimates of all the nodes, together with target
trajectories. It shows that the proposed algorithm (Adaptive
Multi-step Consensus Filter, AMCF) gives network-wide ac-
curate estimates of the states of all targets. The estimates were
also generated via MTIC algorithm. The modified version
of JPDA-KCF algorithm taking into account limited sensing
range sensors was also considered but it did not perform
well, yielding not comparable results. It can be seen that the
proposed algorithm achieves the same level of performance
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Fig. 2. Average distance per node per target between the true and the
estimated positions (top) and average variance of the estimates per target
(bottom) versus time

as MTIC in terms of the estimation error and that it reaches
greater agreement of the estimates compared to MTIC.

For a more thorough comparison, an experiment was set
with 100 different randomly selected networks, each with 4
randomly generated tracks. Estimation error (average distance
per node per target between targets positions estimates and the
actual positions) and disagreement between the nodes (average
variance of the estimates per target) were calculated. The
proposed algorithm was simulated in two versions, in line
with the discussion from the previous subsection: AMCF 1,
where consensus schemes used matrices satisfying (10), and
AMCF 2 where these matrices were replaced by matrices with
equal elements in each row summing up to one. It can be
seen that the proposed algorithm exhibits similar performance
in both versions, with estimation errors at the same level as
MTIC, but with significantly smaller disagreement.

Finally, we compared performances of the aforementioned
algorithms with respect to the number of consensus steps
applied. To this end, the setting above was repeated for
K = 2, . . . , 10. It can be seen that the proposed algorithm for
lower K outperforms MTIC in terms of disagreement even
more than for higher K. This implies that with the careful
communication weights design one can apply consensus with
as low as K = 3 and obtain an algorithm with very good
performance (this K would of course be higher for sparser
communication topologies).
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consensus based ipdaf for tracking in vision networks,” in 2016 IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), Sept 2016, pp. 304–309.
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