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Abstract— This paper presents and evaluates a Sequential 
Monte Carlo (SMC) approach for target estimating. In a 
surveillance situation, the origin of each measurement is 
uncertain. Each measurement may be a false (clutter) 
measurement, or it may be a target detection. Probabilistic 
Hypothesis Density (PHD) methods are usually used to 
discriminate between the clutter and the target measurements. 
Clutter measurement density is an important parameter in this 
process. The values of the clutter measurement density in the 
surveillance space are rarely known a-priory, and are usually 
estimated using sensor data and track information. This 
method enhances target tracking performance, compared with 
standard particle filter. Simulation results validate this 
approach.   

 
Index Terms—PHD filter, target tracking, SMC methods.  
 

I. INTRODUCTION 
In a target tracking, the number of targets and their 

trajectories vary with time due to targets appearing and 
disappearing. In this article we only consider the standard 
setting where sensor measurements at each instance have 
been preprocessed into a set of points or detections [1]. The 
tracker receives a random number of measurements due to 
detection uncertainty and false alarms. Tracks are initialized 
and updated using random measurements of unknown 
origin, thus each track may be a true track (following a 
target) or a false track [2]. For nonlinear and non-Gaussian 
models, particle filtering [3], (or Sequential Monte Carlo -
SMC) [4], [5], has become a practical and popular numerical 
technique to approximate the Bayesian tracking recursions. 
This is due to its efficiency, simplicity, flexibility, ease of 
implementation, and modelling success over a wide range of 
challenging applications. It represents the target distribution 
with a set of samples, known as particles, and associated 
importance weights, which are then propagated through time 
to give approximations of the target distribution at 
subsequent time steps.  

A number of target tracking algorithms are used at present 
in various tracking applications, with the most popular being 
the Joint Probabilistic Data Association Filter (JPDAF), 
Multiple Hypothesis Tracking (MHT) [6,7,8], and Random 
Finite Set (RFS) based multitarget filters [9-12]. The MHT 
tracker attempts to keep track of all the possible association 
hypotheses over time. In this paper, we proposed a 
sequential Monte Carlo methodology [13,14].  
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The paper is organized as follows: after introduction 
considerations, a problem statement is presented in Section 
II. Section III derives the PHD filter approach, followed by 
the one recursion of SMC Particle PHD filter approach 
which is  presented in Section IV.  Concluding remarks are 
presented in Section V.  

II. PROBLEM STATEMENTS  
Target tracking is a dynamic state estimation problem, in 

which the state varies with time. This procedure involves 
determining the existence and the trajectory of possible 
targets in the surveillance space, by comparing random 
measurements received by the sensor with the applicable 
stochastic models. We use superscripts   to denote tracks, 
and also targets followed by tracks.  

A. Targets model 
In this paper we use the Markov Chain model [15] for the 

propagation of the probability of target existence [16]. This 
model assumes that a target may exist and when it does it is 
always detectable with a given probability of detection PD, 
or it may not exist. During the targets maneuvering, the 
motion can be changed at random times. The trajectory of a 
target can be described at any time by one of predefined 
dynamic models. A linear model is considered. The targets 
trajectory state, for the linear system, at time k, evolves by:  

 

           
  kkkk xFx  1             (1) 

 
where kF  is the propagation matrix, and the process  k  
noise is a zero mean and white Gaussian sequence with 
covariance. At each scan k, the sensor returns a random 
number of the random target and clutter measurements. The 
measurement of the existing and detectable target is taken 
with a probability of detection. 

B. Sensors model  
At each scan the sensor returns a random number of the 

random target measurements and a random number of the 
random clutter measurements. The measurement of the 
existing and detectable target is taken with a probability of 
detection PD is given by the following equation:  

 
 k k ky Hx w              (2) 

 
where H is measurements matrix and the measurements 

noise 
kw   is zero mean and white Gaussian sequence with 

covariance matrix R.  
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C. Measurements model 
Measurements may originate from the targets as well as 

from other objects [17]. The clutter measurements follow 
the Poisson distribution. We assume that the uniform 
intensity of the Poisson process at point y in the 
measurement space, termed here the clutter measurement 
density and denote by ( )y  is a priori known, or can be 
estimated using the sensor measurements. At time k, one 
sensor delivers a set of measurements denoted by 

kM
jjkk yy 1, }{  . Denote by kY   the sequence of selected 

measurement sets up to including time k,  
},...,,...,,{ ,,1,

1
kMkjkk

kK yyyYY  .  

III. PROBABILITY HIPOTHESYS DENSITY FILTER  
The Probability Hipothesys Density filter of an Random 

Finite Sets is the analog of the expectation of a random 
vector. The Random Finite Set   can be represented by a 
random counting measure )(SM  defined by the number of 
elements in set }{Y . Assuming there are n targets in the 

multi target system, each having state s, the density p of 

M can be used to represent the RFS  : 
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where )( ii Xs  denotes the Dirac delta function centered 
at X. The PHD is then the first moment of the above is 

)}({)( XpEXD   . The first moment density PHD  is  
given by the equation: 
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The expected number of targets in region S is then 
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The PHD filter recursion is given in [10] and [11]. The 
predicted PHD is 
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where 
 

)()()()( 1111 XYbXYfXdXYD kkkkkkkk     (7) 

and  
 )(1 Yb kk  : PHD of the spontaneous target birth, 

 )(1 Xd kk 
: probability of target survival, 

 )(1 YXf kk  : transition probability density, 

 )(1 XYb kk  : PHD of the targets spawned by 

existing targets.   
After the new scan k,  arives neasurements data 

},...,{ 1 m
k yyY  , the updated PHD is given by: 
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and  
 )(XPD is probability of detection,  
 k is average number  of false alarms per scan, 

assuming a Poisson distribution,   
 )(Yck is distribution of each of the false alarms, 
 ]|)[( XYkf is sensor likelihood function.  
 

At each time step, the PHD filter propagates not only the 
PHD, but also the expected number of targets.  

Consequently, estimation of the multitarget state is 

accomplished by searching for the }min{ kkN  largest 

peaks of )( k
kk YXD .  

IV. SEQUENTIAL MONTE CARLO PHD RECURSION 
The PHD propagation involves multiple integrals that 

have no computationally tractable closed form expressions 
even for the simple case where individual targets follow a 
linear Gaussian dynamic model. Particle filtering techniques 
permit recursive propagation of the full posterior and have 
been used for near-optimal Bayesian filtering. The SMC 
implementation of the Particle PHD filter was given from 
[6]. For any 0k  let )(

1)}(),({ kL
iii kkw   denote a particle 

approximation of the PHD. The algorithm is designed such 
that the concentration of particles in a given region of the 
state space represents the expected number of targets in this 
region. We start with )1( kL particles, which are predicted 
forward to time k. At time k, we generate additional )(kJ  
new particles for exploring newborn targets. In the 
prediction step, we can get particle representation: 
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The update step maps the function with particle 
representation  
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into one with particle representation 
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by modifying the weights of these particles. Note that when 
implementing the resampling step, the weights are not 

normalized to 1 but sum to kkN̂ , the expected number of 
targets at time k. The procedure of the particle PHD filter is 
given as follows. 
 

A. Prediction Step 
For )1(,...,1  kLi  sample ]),1(~)[()(~ k

ii Ykkqk     

and compute the predicted weights: 
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For kJkLkLi  )1(,...,1)1( , sample 

])[()(~ k
i Ykpk  and compute the weights of newborn 

particles: 
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Where ])[1(])[1(])[1(],)[(  kkbkkfkkdk   

with ])[1( kkd , ])[1( kkf  and denoting ])[1( kkb  

the same meaning as in (14), ),( kp and ),( kq  are proposal 

densities and ),( kb  denotes the PHD of the spontaneous 
target birth. 
 

B. Update Step 

For each kYy  compute 
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For )()1(,...,1 kJkLi  update weights 
 
 

)1(~]
),(),()(

)](~,,[
1[

)(~











kkw
ykCykck

kykP

kw

i
Yy

i
D

i

k
  (14) 

 
where ),(),,(  ykfPyk D  and DPkck ),,(),(   and 

),( kf denote the same thing as in (8-10). 

C.  Resampling step 
Compute the total mass 
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In this filter, since the PHD is obtained for a frame at 
each scan, there is no state-to-state correlation between 
consecutive scans, so the choice of the proposal densities qk 

and pk is rather subjective. Besides, all the measurements 
including target-originated and clutter-originated 
measurements are used equally weighted in the update step. 
This is not efficient for the use of the particles.  

In next section, we introduce a track labeling technique 
combined with the PHD, so that we can use the information 
from the previous scan and choose better proposal densities 
and adjust the weights for the measurements accordingly in 
the update step. A flow chart of Particle PHD algorithm is 
given by the Figure 1.  
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Fig. 1.  Flow chart of Particle PHD algorithm . 

V. RESULTS OF SIMULATIONS 
The application selected for the study was a two 

dimensional (positions and velocities), four-state aircraft 
tracking problem in which the sensor observes both position 
coordinates. The area under surveillance was x=[0;1000][m] 
long and y=[0;1000][m] wide. Simulations have been 
performed by choosing 1000 particles. In the initialization 
process, creating a total of N=1000 particles on the track, 
and schedules are to: position have to Gaussian distribution, 
and the speeds have uniform distribution in a circle with the 
center at zero and radius v_max. Both dimensions were 
assumed independent. The SMC Particle PHD parameters 
are calculated on-line according to the appropriate 



 

equations. Period of scaning is T=1s. Experiment were 
conducted on the basis of single target tracking (STT). 
Transition and process noise matrix are given by:  
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Measurements governed by the matrix:  
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The measurements noise vector are independent Gaussian 

noise with constant covariance matrix, given by the 
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simulation with five targets and 100 Monte Carlo runs are 
presented. Each run lasted for 60 scans.  

Results of simulation are presented by the diagrams of 
diagrams of confirmed true tracks over time and Root Mean 
Square target position error, respectivelly, compared 
proposed SMC Particle PHD and standard Particle Filter 
(Figure 1. and Figure 2.).  

 
Fig. 2.  Diagram of number of confirmed true track over time. 

 
Fig. 3.Diagram of Root Mean Square Error of target position . 
 

VI. CONCLUSION 
In this paper, we suggested and compared a single target 

tracking SMC aproach named Particle PHD algorithms. 
Through an single target tracking numerical simulations 
with clutter, we showed that proposed methodology have 
good tracking performance (diagram of number of 
confirmed true track over time and root mean square error of 
target postion), compared with standard Particle Filter.      

 Although, a number of open questions remain, and 
various avenues are available for future research. Problems 
are the modification of the algorithms to deal with an 
unknown and variable number of targets, and the 
development of automatic initialisation (or detection) 
procedures.  
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