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Abstract—Analysis-time requirements of a method for analysis 
of axially symmetric metallic antennas are considered when 
using 1) modified and 2) max-ortho basis functions. Several 
improvements in implementation of max-ortho basis functions 
are inspected in order to increase the efficiency of the algorithm 
and reduce the matrix fill-in time. Benefits of these 
improvements are shown on the example of a thick dipole 
antenna. 

 
Index Terms—Axially symmetric antenna, integral equations, 

matrix fill time, max-ortho basis functions, method of moments.  
 

I. INTRODUCTION 
DEMANDS for efficient and accurate full wave EM 

analysis of electrically large structures in frequency domain 
are continuously growing. Therefore, many researchers focus 
on inventing various techniques that can reduce memory and 
CPU time resources needed for these simulations. 

Efficiency of EM simulations can be improved by using 
higher order basis functions, since it is shown that the same 
accuracy can be achieved with fewer number of unknowns if 
higher order bases are used instead of increasing the 
segmentation of the system [1]. However, increasing the 
maximum expansion order results at some point in poorly 
conditioned system matrix and unstable solution. This 
condition number can be significantly reduced if higher order 
basis functions with orthogonality properties are used. In [2] it 
is shown that condition number for max-ortho bases 
practically does not depend on used expansion order. 

In [3], [4] a new method for analysis of axially symmetric 
metallic antennas is developed which uses electric field 
integral equation (EFIE) based on exact kernel in combination 
with Galerkin test procedure to specify the problem, truncated 
cones for precise geometrical modeling and modified higher 
order basis functions for approximation of the unknown 
surface currents. In [5] implementation of max-ortho bases is 
examined from the aspect of analysis-time requirements and 
average number of integration points per system matrix 
element. 

In this work the goal is to reduce duration of matrix fill in 
case of max-ortho bases and to compare these results with 
results for modified bases. In Section II implementation of 
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modified and max-ortho bases in the method from [4] is 
given. In Section III matrix fill-in time requirements of the 
method in case of modified and max-ortho bases are analyzed 
on the example of a thick dipole antenna for various 
expansion orders in single and double precision, and several 
improvements are considered for implementation of max-
ortho bases. 

II. DESCRIPTION OF THE METHOD 
The method from [4] analyzes axially symmetric metallic 

antennas placed in vacuum, which can consist of one or more 
bodies. They are modeled with ne building elements in the 
form of perfectly conducting right-truncated cone surfaces. 
The system is driven by voltage, delta generators of angular 
frequency . In inset of Fig. 1 thick dipole antenna is shown 
as an example of such structure. The unknown current along 
each of antenna building elements is approximated with 
modified higher order basis functions given with 
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where s is local coordinate that goes along the generatrix of 
the element and n is the expansion order of the current at 
considered element. Impedance integrals that figure in MoM 
system matrix based on exact kernel of EFIE, that correspond 
to the coupling between the lth and kth element, are given with 
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where sk, sl and p = pk - pl are local coordinates for the kth and 
lth element, 00  is the phase coefficient , 00 Z  

is the intrinsic impedance, R = |rl - rk| is the distance between 
the field point rl and the source point rk, and g(R) = e-jβR/(4πR) 
is the  Green's function. 

If modified bases are used then impedance integrals (2) can 
be represented as a linear combination of impedance integrals 
due to power functions 
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Using modified bases maximal expansion order that can be 
applied is n = 10 (20) in single (double) precision. If max-
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ortho bases are used it is expected to obtain stable results up 
extremely high orders. They can be expressed in terms of 
power functions, in which case max-ortho impedance 
integrals can again be obtained as a linear combination of 
integrals (3). Also, max-ortho bases can be expressed in terms 
of Legendre polynomials, as 
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in which case max-ortho impedance integrals can be 
represented as a linear combination of impedance integrals 
due to Legendre polynomials and their derivatives, given with 
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where  = 0, 1. To evaluate these integrals recurrent formulas 
for Legendre polynomials and their derivatives are applied, 
which are given with 
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where L0(s) = 1, L1(s) = s, and ssLsL ii d/)(d)(  . Since it is 
expected that evaluation of max-ortho impedance integrals in 
terms of P-integrals (3) results in insufficiently precise results, 
they are obtained as a linear combination of Q-integrals (5). In 
order to enable evaluation of system matrix elements with 
desired accuracy formulas for predicting the number of 
integration points developed in [4] are modified so that the 
number of points is increased. 

III. NUMERICAL RESULTS 
In what follows analysis time requirements for max-ortho 

and modified bases are considered on the example of a thick 
dipole antenna shown in inset of Fig. 1. Antenna dimensions 
from the inset are h1,3 = a = 0.15 m and m 215.02 h . 
Frequency of analysis is f = 300 MHz, number of unknowns is 
N = 767, and used expansion orders are n = {1, 2, 4, 8, 16, 32, 
64, 128}. It consists of ne = 6 initial elements that are further 
subdivided into ns = 128/n sub-elements. Processor Intel(R) 
Core(TM) i7-4700MQ CPU @ 2.40GHz 2.39GHz with 8 
cores is used for analysis, while the simulations are 
parallelized on 7 cores.  

In [5] duration of matrix fill and average number of 
integration points per system matrix element versus expansion 

order for max-ortho bases are considered for several cases of 
desired number of significant digits χ. Here, in Figs. 1 and 2 
results for max-ortho bases for χ = 6, 15 are compared with the 
case where modified bases are used. Fig. 1. shows average 
number of integration points per system matrix element versus 
expansion order, and it is seen that the number of integration 
points is larger in case of max-ortho bases. It is also seen that, 
in case of modified bases, number of integration points Np 
decreases until n = 64 where Np = 90 in single precision and 
afterwards remains practically constant. In contrast to that in 
case of max-ortho bases, the number of integration points for 
single precision decreases until n = 16 where Np = 150 and 
afterwards increases. 
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Fig. 1. Average number of integration points per system matrix element Np 
versus expansion order n for thick dipole antenna in case of modified and 
max-ortho bases for number of significant digits χ = 6, 15. 
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Fig. 2. Matrix fill-in time t versus expansion order n for thick dipole antenna 
in case of modified and max-ortho bases for number of significant digits 
χ = 6, 15. 
 

Fig. 2 shows matrix fill-in time versus expansion order, and 
it can be seen that higher order bases up to n = 128 require 
about the same time or less than lower order bases (i.e. for 
n = 1, 2). It is also seen that for higher expansion orders matrix 
fill-in time is dramatically longer for max-ortho bases than for 



 

modified. In case of modified bases minimum matrix fill-in 
time of about t = 2.5 s is achieved with expansion order n = 8, 
and with further increasing the expansion order time increases 
very slowly. However stable results are obtained with 
maximum of 20th order. In case of max-ortho bases the 
minimum time achieved is about t = 4.3 s for n = 8, and with 
further increasing the approximation order time increases 
relatively quickly. This difference in matrix fill-in time is due 
to the greater number of integration points, and also because 
of the time consuming recurrent formulas (6) that are used for 
precise evaluation of max-ortho impedance integrals. 

When trying to improve the efficiency of the method in 
case of max-ortho bases it was noticed that large amount of 
time goes to division of 1/i (i is the order of observed basis 
function fi) within the 1st integration of (5), in the loop for 
integration points where Legendre polynomials and their 
derivatives are evaluated. Therefore, it was chosen to form in 
advance (i.e. outside of the loop) an array igi /0.1  which 
will be afterwards used at every integration point in the loop. 

Fig. 3 shows matrix fill-in time in case of max-ortho bases 
with and without this modification. From the results it is seen 
that analysis lasts around 90 s less for n = 128 and χ = 15, 
when this modification is implemented which is around 30% 
of initial time. 
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Fig. 3. Matrix fill-in time t versus expansion order n in case of max-ortho 
bases for number of significant digits χ = 6, 15, 1) when modifications 
regarding array 1/i are implemented and 2) before (i.e. without these 
modifications). 
 

Results from Figs. 2 and 3 are obtained in the case when 
the 1st integration of impedance integrals due to Legendre 
polynomials and their derivatives is evaluated simultaneously, 
in the same loop. The 1st integration of impedance integrals 
due to Legendre derivatives (5b) can also be evaluated in 
terms of impedance integrals due to Legendre polynomials 
(5a) using (6b), which would enable their evaluation outside 
of the loop. 

Fig. 4 shows duration of matrix fill in case of max-ortho 
bases when the 1st integration of impedance integrals due to 
Legendre derivatives is evaluated 1) simultaneously, in the 
same loop with Legendre impedance integrals and 2) outside 

of the loop using (6b). From Fig. 4 it is seen that in the second 
case simulations last less time so that for χ = 15 and n = 128 it 
is saved around 33 s for matrix fill which is around 15% of 
total time. 
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Fig. 4. Duration of matrix fill versus expansion order n in case of max-ortho 
bases and χ = 6, 15, when the 1st integration of impedance integrals due to 
Legendre derivatives are evaluated 1) simultaneously, in the same loop with 
Legendre impedance integrals and 2) outside of the loop using (6b). 
 

Another possibility is to evaluate impedance integrals due 
to Legendre derivatives after the 2nd integration as a linear 
combination of corresponding impedance integrals due to 
Legendre polynomials using (6b). Accordingly, Fig. 5 shows 
matrix fill-in time when impedance integrals due to Legendre 
derivatives (5b) are evaluated as a linear combination (6b) of 
impedance integrals (5a) 1) after their 1st integration, and 
2) after their 2nd integration. Results from Fig. 5 show that if 
2nd modification is applied instead of the 1st one, matrix fill 
for n = 128 and χ = 6, 15 lasts additional 4 s less. Note that the 
2nd integration takes around 8% of total matrix fill-in time, 
whereas the 1st integration lasts around 90% of this time. 
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Fig. 5. Duration t of matrix fill versus expansion order n in case of max-ortho 
bases and χ = 6, 15, when impedance integrals due to Legendre derivatives 
(5b) are evaluated as a linear combination (6b) of integrals (5a) 1) after their 
1st integration and 2) after their 2nd integration. 
 



 

Although the improvements made to the algorithm (when 
using max-ortho bases) reduce analysis time dramatically, 
when comparing results from Fig. 5 with results for modified 
bases from Fig. 2 it is seen that max-ortho bases still require 
more time especially for ultra high orders (i.e. for n > 32). The 
reason for this is larger number of integration points needed 
for precise evaluation of max-ortho impedance integrals than 
for evaluation of impedance integrals due to modified bases. 

Fig. 6 shows results for matrix fill-in time in case of 1) 
modified bases and 2) max-ortho bases when the same 
number of integration points are used as for the modified 
bases. Results show that duration of matrix fill in case of max-
ortho basis functions is now comparable with the time for 
modified. For example in case of n = 128 and χ = 15 time for 
max-ortho basis functions is ~32 s, and for modified is ~22 s. 

From these results it can be concluded that, after 
implementing above mentioned modifications, time for matrix 
fill in case of max-ortho bases is longer for ultra high 
expansion orders compared to the case of modified bases 
primarily because of the larger number of integration points 
needed for precise evaluation of max-ortho impedance 
integrals. 
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Fig. 6. Matrix fill-in time t versus expansion order n in case of thick dipole 
antenna using 1) modified bases, and 2) max-ortho bases when the same 
number of integration points are used as for the modified bases. 

IV. CONCLUSION 
The work inspects analysis-time requirements of a new 

method for analysis of axially symmetric metallic antennas 

[3], [4] when using 1) modified and 2) max-ortho basis 
functions. 

From the results for matrix fill-in time requirements and 
average number of integration points needed per system 
matrix element it is seen that there is a trade-off between used 
expansion order and analysis time requirements in case of 
max-ortho bases, which does not exist in case of modified 
bases. However in case of modified basis functions, stable 
results can be obtained with maximum of 20th order. 

Several improvements in implementation of max-ortho 
basis functions are inspected in order to reduce matrix fill-in 
time. After implementing the array 1/i before the loop for the 
1st integration of (5), and after evaluating impedance integrals 
due to Legendre derivatives (5b) as a linear combination (6b) 
of corresponding impedance integrals due to Legendre 
polynomials (5a) after their 2nd integration (outside of the 
loops for the 1st and 2nd integration) around 40% of total time 
for matrix fill is saved.  

After these improvements are made to the algorithm, the 
difference in time for matrix fill between max-ortho and 
modified bases is primarily because of the larger number of 
integration pointes needed for precise evaluation of max-ortho 
impedance integrals. 
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