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Abstract—Microwave tomography is an ill-posed inverse prob-
lem. It is a non-linear multimodal optimization problem. As such,
microwave tomography is highly computationally intensive and
needs advanced optimization methods to be solved quickly. In
contrast to typical approach based on faster local optimization
coupled with linearization or regularization methods, the solu-
tion presented in this paper uses adaptive global optimization
methods for more precise resulting images. Also, proposed
solution uses time-domain solver to obtain measurement on
multiple frequencies, for easier solving of the ill-posed problem.
A two-dimensional numerical prototype is implemented. Few
optimization methods are compared, yielding the covariance
matrix adaptive hybrid method to be most effective.

Index Terms—Microwave tomography, microwave imaging,
inverse scattering problem, optimization, FDTD, CMA-ES, ACiD.

I. INTRODUCTION

Microwave tomography (MWT) [1] is an inverse scattering
problem used for object imaging by means of electromagnetic
(EM) waves. Object under imaging is illuminated by the EM
waves, the object scatters EM waves and output scattered
waves are measured. Output scattered waves are practically
a function of dielectric properties distribution in the object
under imaging. Generally, that distribution is unknown and it
represents the final target of the imaging process. Obtaining
scattering function i.e. image of the dielectric distribution from
input and output EM waves is an inverse scattering problem
which is solved numerically.

Microwave tomography is an interdisciplinary field, involv-
ing electromagnetic, measurement, numeric and optimization.
For effective imaging, interoperability between aforemen-
tioned fields is needed. Application of microwave tomogra-
phy is also diverse, including: biomedical scanning [2], non-
destructive material testing, subsurface imaging [3] [4] and
more.
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Because EM scattering occurs multiple times, inverse scat-
tering is an ill-posed problem, meaning it has multiple solu-
tions. Few methods exist to tackle this optimization problem.
First method for solving this problem is the linearization of
inverse problem by introducing approximation in EM scat-
tering equations and solving the problem with local (con-
vex) optimization methods. Examples are Born and Rytov
approximations [5] [6]. These approximations limit the use
of microwave tomography to problems with small contrast in
dielectric distribution [7] [8]. Second method is the application
of regularization in optimization, also enabling usage of local
optimization methods. Drawback of regularization is a blurred
resulting image, because regularization acts as a low-pass
filter of objective function. Third method is the application of
global optimization methods, which are more computationally
intensive, but could yield images of better quality. Forth
method is the indirect optimization of the dielectric image.
Instead of optimizing values of the image pixels, geometry
and dielectric values of some regions are parametrized and
these parameters are tuned by global optimization methods.
This approach demands a priori knowledge about the geometry
of the object under imaging and it is more functional than
structural type of imaging.

In this paper, the global optimization methods are selected
for the solving of the inverse scattering problem. Using
findings from previous work [9] and knowledge from lit-
erature [10] few optimization heuristics are selected: global
optimization heuristics Artificial Bee Colony (ABC) [11] [12]
and Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) [13] [14] [15], as well as hybrid of global with
local optimization heuristics ABC hybrid with Hooke-Jeeves
[16] [17] (ABC/HJ) [9] and CMA-ES hybrid with Adaptive
Coordinate Descent [18] (CMA-ES/ACiD). Final experimental
comparison yields CMA-ES/ACiD hybrid methods to be the
best method. Finite-Difference Time-Domain (FDTD) [19]
[20] is used as a solver and multiple frequencies are used
for comparison of output scattered waves. Currently, only
two-dimensional (2D) FDTD with soft-source is implemented,
while 3D FDTD with accurate antenna and measurement
chamber modeling is work in progress [21].

In Chapter II short survey of existing solutions is presented.
Implementation of the proposed solution is described in Chap-
ter III. Experimental results with comparison are given in
Chapter IV. Chapter V includes final conclusions and future
research directions.
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II. RELATED WORK

The fastest possible method for inversion is diffraction
tomography [22]. It is based on linearization of scattering
equations by the Born or Rythov approximation. As mentioned
before, this linearization works only when the contrast in
dielectric distribution is small. When contrast is large, mul-
tiple scattering occurs, introducing non-linearity. In typical
microwave tomography applications, contrast is considerably
large and linearization cannot be applied [7] [8].

Quantitative non-linear methods are most commonly used
in microwave imaging. First class of these methods does
not use the EM forward solver. These are gradient methods;
for example Contrast Source Inversion (CSI) [23] [24] [25].
Second class of these methods are iterative ones. They start
with the Born linearized solution and iteratively improve it
by simulating additional scattering through the forward solver
[26] [27] [28] [29] [30].

Third class of methods uses forward solver to simulate scat-
tered fields. Scattered fields are compared with measured ones
by calculate Mean Square Error (MSE). Optimization methods
are used to find best match between measured and simulated
fields. Most of these methods use local optimization, usually
Gauss-Newton [25] [31] or Conjugate-Gradient [32] [33] or
similar gradient-based heuristic. These local heuristics need
some kind of regularization to make objective function convex.
Still, these methods could miss the solution if they are not
provided with a good initial solution and good regularization
term. Also, these methods are criticized due to smoothing
out resulting image, because low-pass filtering of objective
function through regularization [1].

Better approach from aforementioned local heuristics as-
sumes using global heuristics. In comparison with local meth-
ods, stochastic global optimization methods explore the search
space better and the probability of getting stuck in a local
sub-optimal solution is lower. Drawback of these methods is
slow convergence. Typical global heuristics are: evolutionary
based like Genetic Algorithm (GA) [34], swarm based like
Particle Swarm Optimization (PSO) [35] [1], Artificial Bee
Colony (ABC) [11], Ant Colony Optimization (ACO) [36],
and others [12]. For faster convergence hybridization with
local heuristics is often used [9]. Adapting search direction
to objective landscape instead to coordinate axes could also
yield better convergence and exploration [13] [18] [10] [3]
[4].

Broad range of solvers is used in literature. One method
assumes solving Electric-field Integral Equation (EFIE) by
Methods of Moments (MoM) [37]. Very popular method
is Finite Element Method (FEM) [31] [10]. Alongside the
aforementioned frequency based methods, Finite-Difference
Time-Domain (FDTD) is a referent time-domain based method
[34] [32] [33] [31]. FDTD simulates propagation of EM
waves in discrete space, with discrete time steps. Because
FDTD is time-domain method it is possible to excite the
simulation with an EM wave with broad frequency spectrum.
It is experimentally proven that using multiple frequencies

Fig. 1. FDTD solver configuration

makes inverse scattering a less ill-posed problem and helps
faster convergence of the inversion [38] [39] [29]. Many others
solvers exist.

III. IMPLEMENTATION

In previous research [9], analysis of inverse objective
function’s landscape is conducted. Analysis is done on the
similar FDTD forward solver used in this paper, without
any approximations or regularization on objective function.
Analysis has shown that objective function is very rugged and
composed of narrow valleys. Valleys have steep sides and mild
axial slope. They are usually not directed alongside coordinate
axes, but stretched in some diagonal direction. Typical (local)
heuristic which searches alongside coordinate axes fails to
propagate through such valleys. Attempt to solve this problem
was searching in diagonal directions, but the number of
search directions rises exponentially with the number of pixels
optimized, further slowing down the optimization.

Such rugged landscape of the objective function is also
not usable for calculating the gradient. Steep sides of valleys
will misled optimization heuristic in the wrong direction. This
is one reason why regularization is needed. For example,
one implementation of inversion using FDTD solver and
gradient optimization applies regularization just on gradient
information, but not on the entire objective function [32]. Such
approach brings less filtering applied on objective function and
inversion could give better results.

One solution which could help with such a landscape is
utilization of adaptive optimization methods. CMA-ES and
ACiD are typical methods and these are used in this paper.

In this paper CMA-ES is hybridized with ACiD. First, the
ACiD local optimization is run, for the fast exploitation i.e.
fast cost (fitness) decrease towards minimum. At some point
ACiD stops being effective, due to intense ruggedness of the
landscape at smaller step size. After that, CMA-ES proceeds
using covariance information from ACiD, doing exploration in
the nearby. Another hybrid is ABC with HJ executed on every



Fig. 2. Area under imaging: object under imaging and best match

bee [11], to raise exploitation [9]. Also, standalone CMA-ES
and ABC are used for comparison.

Among other solutions also based on CMA-ES [10], uses
FEM as forward solver, [3] [4] use CG-FFT, while solution
proposed in this paper utilizes FDTD. Also, CMA-ES is used
for parameter optimization in electromagnetic problems [40]
[41].

In this paper 2D TM-mode (Ez-mode) FDTD algorithm is
used as a solver. Entire space is represented by 2D rectangular
grid. In Fig. 1 solver configuration is presented with defined
area under imaging which should contain the object under
imaging. Permittivities of the grid’s cells in the area under
imaging are input values for the solver. Dual free space layers
with an array of point antennas surrounds this area. 6 layers of
Uniaxial Perfectly Matched Layer (UPML) are set around, to
absorb waves going out of imaging space. The discretization
constant of space is set to 16th part of smallest wavelength,
while space and time discretization constant are connected by
Courant-Friedrichs-Lewy (CFL) condition.

Simulation is done through iterations. While a single an-
tenna is transmitting, others receive the scattered waves. This
is repeated until all antennas took the role of a transmitter. All
received fields represent the output from the solver. Soft point
source is used for the excitation, emulating transmit antennas.
In the same positions the field is sampled, emulating receive
antennas.

For the excitation, a signal specially optimized for FDTD is
used [42]. Main characteristics of this signal include wideband,
DC-less, short bandwidth product (excitation/simulation time)
and continuity of derivatives in FDTD formulas for better
precision.

At first, the solver is used for measurement simulation. The
target solution is set in the area under imaging and output
is used as a measured field. This output could be the field
measured in real world. Afterwards, the solver is repeatedly
called by the optimization algorithm, with some trial as input
and giving simulated field as output. Cost i.e. fitness of
objective function is the sum of the squared difference between
measured and simulated fields.

IV. RESULTS

Comparison is done on 3 by 3 optimization cells (9 degrees
of freedom), where every optimization cell is a 2 by 2 FDTD
cell. Simple object is imaged, with geometry defined by FDTD
cells instead of using optimization cells, to partially avoid

Fig. 3. Cost progress comparison for four heuristics

Fig. 4. Advancement progress comparison for four heuristics

inverse crime. Fig. 2 shows cell values of area under imaging.
Object under imaging used in measurement simulation is show
on the left and best possible match by the optimization is
shown on the right. Every cell (larger are optimization and
smaller FDTD cells) contains value of relative permittivity εr.
Range of εr of the object under imaging is between 1.0 and
4.5, while for heuristics variate optimization cells between 1.0
to 1.93. Such smaller range is possible because optimization
cells could not have values larger than object’s FDTD cells
average. This experimental setup measure 20 frequencies in
range between 300MHz-1GHz. FDTD cell is around 5mm x
5mm in dimensions.

As mentioned in introduction, four heuristics are used and
compared. In Fig. 3 progress of cost (fitness) of the objective
function is shown. It can be observed that the ABC global
optimization heuristic has slowest convergence. ABC/HJ hy-
brid heuristic has a faster convergence in comparison to ABC.
Both ABC and ABC/HJ inherit problems with long stagnation



Fig. 5. Cost progress comparison for CMA based heuristics

Fig. 6. Advancement progress comparison for CMA based heuristics

periods. Reason for this is the low exploration of search space.
On the other hand, CMA-ES and ACiD/CMA-ES have much
faster convergence, without severe stagnation.

Fig. 4 shows the progress of distance between the best
solution and the true minimum solution. It could be seen
that this metric has similar behavior as the cost progress.
ABC based methods need few times more objective function’s
evaluations to converge and still not so close to true minimum
as CMA based methods.

Fig. 5 is a closer look to the cost progress between CMA
based heuristics. It could be seen that ACiD has fast conver-
gence during first hundred iterations. After ACiD, CMA-ES
proceeds and usually comes to the true minimum before CMA-
ES only heuristic. Fig. 6 shows that the distance also behaves
like the cost and ACiD/CMA-ES is a faster method. It should
be noted that because statistical nature of these heuristics these
progress curves of ACiD/CMA-ES could be worse on some
sections than CMA-ES.

V. CONCLUSION

A novel solution for microwave tomography is implemented
and few heuristics are used for optimization. Covariance
matrix adaptive hybrid method is experimentally proven to
be the most effective. Time-domain solver with multiple mea-
surement frequencies is advantageous in contrast with single
frequency solver. The main disadvantage of the used methods
is potentially slower convergence and higher computational
burden of global optimization in comparison to local opti-
mization methods with linearization and regularization.

Future research direction would be focused on 3D FDTD
development with accurate antenna and measurement chamber
model. Advanced modeling requirements will bring additional
computation burden and make optimization problem chal-
lenging and interesting. Also, additional research direction
is implementation of the hardware measurement chamber for
realistic measurement and closing a gap between modeling
and real world.
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