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Abstract—In this paper a closed form expression for the two-

dimensional Green’s function for a truncated wedge is derived. 

The method of separation of variables in Laplace’s equation is 

used to get the function in the form of an infinite series of 

suitible harmonics and then the series is summed up in a closed 

form. Based on the obtained result the capacitance per unit 

length of a thin line conductor inside the wedge is evaluated. 

 

Index Terms—Green’s function, truncated wedge, 

capacitance per unit length.  

 

I. INTRODUCTION 

GREEN’S function is a powerful tool for solving 

boundary value problems for Poisson’s equation (and other 

partial differential equations). Once this function is found 

for a given domain (which may be bounded or unbounded), 

the potential inside the domain is determined by integration, 

for an arbitrary charge distribution. 

A widely used method for constructing Green’s function 

is separation of variables [1]-[3] in the corresponding partial 

differential equation, which gives the function in the form of 

an infinite series or an improper integral with appropriate 

harmonics, depending on the sign of the separation constant. 

In the two-dimensional case, it is possible to use the 

method of conformal mappings [4]. Also, in some particular 

cases, the method of images may be applied [1]-[3]. 

In this paper we use separation of variables in Laplace’s 

equation in cylindrical coordinates to obtain the Green’s 

function for a truncated wedge. The function is obtained in 

the form of an infinite series of properly chosen harmonics. 

It turns out that this series can be summed up in a closed 

form.  

II. DERIVATION OF GREEN’S FUNCTION FOR A TRUNCATED 

WEDGE 

Fig. 1 shows the cross section of a bounded two-

dimensional domain having the form of a wedge with angle 

α, truncated by a circular arc of radius R. By defintion, the 

Green’s function is defined as the potential at the point (r,θ) 

inside the domain, created by a unit line charge at the point 

(r’,θ’), provided the boundary of the domain is at zero 

potential. 
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Fig. 1. 

 

In other words, for fixed r’ and θ’ the Green’s function 

 

  = r,G r θ =(r',θ',r' V r   (r ( ),r'( ) ))  

 

should satisfy Laplace’s equation. 

 

  0rG r,r'   

 

everywhere inside the domain, except at the point r=r’, 

θ=θ’, where it must exhibit a singularity. Next, the Green’s 

function has to meet the boundary condition 

 

0
s

G   

 

where S is the boundary of the considered domain, defined 

by θ=0, θ=α and r=R.  

To determine the potential (i.e. the Green’s function at an 

arbitrary point r=(r,θ)), it is convenient to divide the domain 

into two subdomains 1 and 2, defined by r<r’ and r’<r≤R, 

respectively, as shown in Fig.1. 

Separation of variables in Lapalce’s equation in 

cylindrical coordinates gives harmonics r
±k

, coskθ and sinkθ. 

The boundary conditions for θ=0 and θ=α are satisfied if we 

choose the sine function with k=nπ/α. Therefore, we may 

write for the potential in subdomain 1. 
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where An (n=1,2,3...) are coefficients to be determined. 

For subdomain 2 we must use a suitible combination of 

harmonics r
±nπ/θ

 to satisfy the boundary condition V2=0 for 

r=R. 

This is achieved if we put 
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with some unknown coefficinets Bn. 

Continuity of the potential at r=r’ requires: 
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whence  
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So far, we have not used the unit line charge which 

determines the potential singularity; it will be convenient to 

use the δ-function formalism. To this end, we “spread” the 

unit charge q’=1 over the surface r=r’ with surface density 
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This surface density, when integrating over the surface 

r=r’ gives the total unit charge 
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Now, it remains to make use of the boundary condition 

for the normal components of the electric field on the 

surface r=r’. 
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Using (1)-(3), from (4) we obtain 
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To obtain the coefficients An, we multiply both sides of 

(5) by sin(mπθ/α) and integrate with respect to θ from θ=0 

to θ=α. Since the functions sin(kπθ/α) form an orthogonal 

set over the segment [0, α], all the terms in the summation in 

(5) vanish, except the one for n=m. Therefore: 
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where we also used the fact that  
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From (6), the coefficients An are 
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Finally, by using (7) and (3), the potentials (1)-(2) in the 

two subdomains become 
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Expressions (9)-(10) constitute the Green’s function 

G(r,r’) for the considered domain. 

The summations in (8)-(9), although seemingly rather 

complicated, can be summed up in a closed form by using 

[5] 
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Hence, 
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The potential V2, given by (9), can be obtained from (10) 

by interchanging r and r’. But, as it can be readily verified, 

this interchange leaves (10) invariant, so formula (10) is also 

valid for V2 and consequently for the Green’s function. 

The Green’s function for an infinite wedge can be 

obtained from (10), if we let R→∞. It is 
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III. CAPACITANCE OF A THIN LINE CONDUCTOR INSIDE THE 

WEDGE 

 Let a thin line conductor of radius ro, carrying charge q’ 

per unit length be positioned at r’=a, θ’=β. We assume that 

the conductor  radius is very small compared to the 

distances from the conductor to the wedge walls. The 

conductor potential can be found from (10), if we put r’=а, 

θ’=β, r=a-ro, θ=β. Actually, we put r=a-ro only in 

denominator of the first fraction under the logarithm, 

elsewhere we may take r=a. Using the approximation  
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we find from (10) 
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and the conductor capacitance per unit length is 
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IV. CONCLUSION 

In this paper we derived Green’s function for a truncated 

wedge, by using separation of variables in Laplace’s 

equation in cylindrical coordinates. The obtained infinite 

series for the function is summed up in a closed form. Also, 

the capacitance per unit length of a thin line conductor 

inside the wedge is obtained. The applied method can be 

used for other shapes of truncated wedges.  
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