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Abstract— In this paper integrated dynamic control of
humanoid locomotion mechanisms based on the spatial dy-
namic model of humanoid mechanism is concerned. The
control scheme was synthesized using the centralized model
with proposed structure of dynamic controller that involves
two feedback loops: position-velocity feedback of the ro-
botic mechanism joints and reinforcement learning feedback
around Zero-Moment Point. The proposed reinforcement
learning is based on modified version of GARIC architecture
for dynamic reactive compensation. Simulation experiments
were carried out in order to validate the proposed control
approach.

Index Terms— Humanoid robots, Biped locomotion, Dy-
namically balanced gait, Reinforcement learning.

I. INTRODUCTION

Many aspects of modern life involve the use of intelligent
machines capable of operating under dynamic interaction
with their environment. In view of this, the field of biped
locomotion is of special interest when human-like robots
are concerned. Although there has been a large number of
the control methods used to solve the problem of humanoid
robot walking , it is difficult to detect a specific trend. Clas-
sical robotics and also the more recent wave of humanoid
and service robots still rely heavily on teleoperation or
fixed behavior-based control with very little autonomous
ability to react to the environment. Among the key missing
elements is the ability to create control systems that can
deal with a large movement repertoire. variable speeds.
constraints and most importantly, uncertainty in the real-
world environment in a fast, reactive manner. We can how-
ever detect a major breakthrough that is definitely setting a
new control direction based on introduction of learning and
appropriate soft-computing paradigms to biped locomotion
. These methods has shown better results in more cases
than conventional control methods.

In this paper, a novel, integrated hybrid dynamic con-
trol structure for the humanoid robots is proposed, using
the complete model of robot mechanism. Our approach
consists in departing from complete conventional control
techniques by using hybrid control strategy based on
model-based approach and learning by experience and
creating the appropriate adaptive control systems. Hence,
the first part of control algorithm represents some kind of
computed torque control method as basic dynamic control
method, while the second part of algorithm is modified

GARIC reinforcement learning architecture for dynamic
compensation of ZMP ( Zero-Moment-Point) error.

The reinforcement learning method [4]. [3], [2] cite
proposed in this paper is based on the Actor-Critic ar-
chitecture. The Actor network can be thought of as the
control agent, because it implements a policy. The Critic
network implements the reinforcement learning part of the
control system as it provides policy evaluation and can be
used to perform policy improvement. This learning agent
architecture has the advantage of implementing both a
reinforcement learning mechanism as well as a control
mechanism. For the Actor, we selected the two-layer,
feedforward neural network with sigmoid hidden units and
linear output units. For the Critic, neuro-fuzzy network is
proposed. The critic is trained to produce the expected
sum of future reinforcement that will be observed given
the current values of deviation of dynamic reactions and
action.

II. MODEL OF THE SYSTEM

A. Model of the robot’s mechanism

The considered mechanism has in total n=20 DOFs of
motion.

Bearing in mind the selected basic link of the mecha-
nism, recursive numerical relations are formed that succes-
sively determine angular and translational velocities and
accelerations of particular links of the robotic mechanism.
Taking into account the dynamic coupling between particu-
lar parts (branches) of the mechanism chain one can derive
the relation that describes the overall dynamic model of the
locomotion mechanism in a vector form [1]:

P = H(q) + h(q, q̇) + JT (q)F (1)

where: P ∈ Rn×1 is the vector of driving moments at the
humanoid robot joints; F ∈ R6×1 is the vector of external
forces and moments acting at the particular points of the
mechanism; H ∈ Rn×n is the square matrix that describes
‘full’ inertia matrix of the mechanism shown in Fig. 1;
h ∈ Rn×1 is the vector of gravitational, centrifugal and
Coriolis moments acting at n mechanism joints; J(q) is
the corresponding Jacobian matrix of the system; n = 20
is the total number of DOFs (Fig. 1). Special importance
in the calculation of the model (1) is
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Fig. 1. Model of the humanoid locomotion mechanism with 18 active
and 2 passive DOFs: (a) kinematic scheme of the mechanism, (b) dynamic
model of the environment

B. Gait phases and indicator of dynamic balance

The robot’s bipedal gait consists of several phases that
are periodically repeated [1]. Fig. 2 illustrates these gait
phases of biped robot locomotion, with the projections of
the contours of the right (RF) and left (LF) robot foot on
the ground surface, whereby the shaded areas represent the
zones of the direct contact with the support. During the
walking, the biped is constantly in the state of a certain
dynamic balance. The indicator of the degree of dynamic
balance is the ZMP, i.e. its relative position with respect
to the footprint of the supporting foot of the locomotion
mechanism. The Instantaneous position of the ZMP is the
best indicator of the dynamic balance of the biped robot.

III. HYBRID DYNAMIC INTEGRATED CONTROL
ALGORITHM

In accordance with the control task, we propose the
application of the algorithm of the so-called hybrid inte-
grated dynamic control, based on the knowing of the overall
dynamic model of the system.

In Fig. 3 is presented the block-diagram of the dynamic
controller for biped locomotion mechanism, proposed in
this work. It involves two feedback loops: (i) position-
velocity feedback, (ii) dynamic reaction feedback at the
ZMP based on GARIC reinforcement learning structure,
The synthesized dynamic controller (Fig. 3) was designed
on the basis of the centralized dynamic model.The vector
of driving moments P̂ represents the sum of the driving
moments P̂1 and P̂2. The moments P̂1 are determined so to

RFLF RF LF RF LF LF RF

swing phase
(SP)

weight support
phase (WSP)

weight acceptance
phase (WAP)

swing phase
(SP)

double support phase (DSP) single support
phase (SSP)

single support
phase (SSP)

Fig. 2. Phases of biped gait

ensure precise tracking of the robot’s position and velocity
in the space of joints coordinates.

A. Controller of trajectory tracking

The tracking controller of the locomotion mechanism
has to ensure the realization of a desired motion of the
humanoid robot and avoiding pf fixed obstacles on its way.
In [1], it has been demonstrated how local PD or PID
controllers of biped locomotion robots are being designed.
In this work, the controller for robotic trajectory tracking
was synthesized using the computing torque method in the
space of internal coordinates of the mechanism joints:

P̂ = Ĥ(q)[q̈0 + Kv(q̇ − q̇0) + Kp(q − q0)] + h(q, q̇) (2)

where Ĥ ,ĥ are the corresponding estimated values of the
inertia matrix, vector of gravitational, centrifugal and Cori-
olis forces and moments from the model (1). The matrices
Kp ∈ Rn×n and Kv ∈ Rn×n are the corresponding
matrices of position and velocity gains of the controller.
The gain matrices Kp and Kv can be chosen in the diagonal
form by which the system is decoupled into nindependent
subsystems.

B. Reinforcement Learning Compensator of Dynamic Re-
actions

In the sense of mechanics, locomotion mechanism rep-
resents an inverted multi link pendulum. In the presence of
elasticity in the system and external environment factors,
the mechanism’s motion causes dynamic reactions at the
robot supporting foot. Thus, the state of dynamic balance
of the locomotion mechanism changes accordingly. For this
reason it is essential to introduce dynamic reaction feed-
back at ZMP in the control synthesis. There are relation-
ship between the deviations of ZMP positions (∆x(zmp),
∆y(zmp)) from its nominal position 0zmp in the motion
directions x and y and the corresponding dynamic reactions
M

(zmp)
x and M

(zmp)
y acting about the mutually orthogonal
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Fig. 3. Block-scheme of the hybrid dynamic control of biped with two feedback loops

axes that pass through the point 0zmp. M
(zmp)
x ∈ R1×1

and M
(zmp)
y ∈ R1×1 represent the moments that tend to

overturn the robotic mechanism, i.e. to produce its rotation
about the mentioned rotation axes (axes of the joints 1’ and
2’ in Fig. 1). On the basis of the above the reinforcement
control algorithm [4] is defined with respect to the dynamic
reaction of the support at ZMP. In this case external
reinforcement signal R is defined according to values of
ZMP errors. If ZMP errors in x and y directions are
greater then chosen limits of supported polygon, external
reinforcement signal is set to value 1. Hence, in this case
AEN network (action evaluation network) maps position
and velocity tracking errors and external reinforcement
signal R in scalar value (internal reinforcement R̂) which
represent the quality of given control task defined by the
chosen control policy:

R̂(t + 1) = R(t) + γv(t + 1)− v(t) (3)

where v(t) is output of AEN; γ is a coefficient between
0 and 1. ASN (action selection network) maps the devia-
tion of dynamic reactions in recommended control torque.
Exactly, by using SAM(Stochastic action modifier), based
on recommended control torque and internal reinforcement
R̂ , control torque Pdr is generated. Learning process of
AEN (tuning of network weighting factors) is realized by
modified version of back propagation algorithm where error
is defined by internal reinforcement signal R̂. In the same
way, using gradient method and internal reinforcement sig-
nal, learning process of ASN is realized. ∆M (zmp) ∈ R2×1

is the vector of deviation of the actual dynamic reactions
from their nominal values. Pdr ∈ R2×1 is the vector of
control moments at the joints 1’ and 2’ (Fig. 1) that ensures

the state of dynamic balance. The control moments Pdr

calculated from GARIC reinforcement learning structure
can not be generated at the joints 1’ and 2’ because these
are underactuated, i.e. passive joints. Because of that the
control action is ‘displaced’ to the other, actuated joints
of the mechanism chain. Since the vector of deviation of
dynamic reactions ∆M (zmp) has two components about
the mutually orthogonal axes x and y, at least two different
active joints have to be used to compensate for these
dynamic reactions. Considering the model of locomotion
mechanism presented in Fig. 1, the compensation was
carried out using the following mechanism joints: 1, 6
and 14 to compensate for the dynamic reactions about the
x-axis and 2, 4 and 13 to compensate for the moments
about the y-axis. Thus, the ankle joints, hip joints and.
waist joints are taken into consideration. Complete control
P̂ (Fig. 4), is calculated on the basis of the vector of
the moments Pdr (after distribution it is P̂2 calculated
using the GARIC structure , whereby it is borne in mind
how many ‘compensational joints’ are really engaged.
In the case when compensation of the ground dynamic
reactions is performed using all six proposed joints the
compensation moments Pdr are uniformly distributed over
all of the selected joints, to load uniformly the . In nature,
biological systems use simultaneously a large number of
joints for correcting their balance. However, for the purpose
of verifying the control algorithm, in this work the choice
was restricted only to the mentioned six joints: 1, 2, 4, 6,
13 and 14 (Fig. 1).

Beside the proposed control approach, it is important to
investigate in future research the following hybrid control
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approach:

P̂ = Pff −Kv(q̇ − q̇0)−Kp(q − q0)] + Prl (4)

where Pff is feedforward control torque based on central-
ized nominal dynamic model of biped; Prl - reinforcement
learning control structure.

IV. SIMULATION EXPERIMENTS

Theoretical results presented previously were analyzed
on the basis of numerical data obtained by simulation of the
closed-loop model of the locomotion mechanism shown in
Fig. 1. The half-step is repeated with this period, whereby
the gait phases presented in Fig. 2 alternate regularly. In
Figs. 4 and 5 are presented the results of applying the
hybrid controller. On analyzing the results presented in
Figure. 4 one can see that the we have better results for
error of ZMP when algorithm with training of ASN neuro-
fuzzy network is used. It can be concluded that without the
feedback with respect to the ground reactions around the
ZMP it is not generally possible to ensure dynamic balance
of the locomotion mechanism in its motion. This comes out
from the fact that the nominal trajectory was synthesized
without taking into account the possible deviations of the
surface on which biped walks from an ideally horizontal
plane.
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Fig. 4. Error of ZMP in x-direction

In Figure 6 are presented the corresponding deviations
(errors) ∆qi and ∆

...
q of the real values of angles and

angular velocities at the robot joints from their nominal
values when the controller of tracking desired trajectory
was applied. The deviations of the variables converge to a
zero value on the given time interval, which means that the
controller employed ensured good tracking of the desired
trajectory.

In Fig. 6 value of internal reinforcement through process
of walking is presented. It is clear that task of walking
within desired ZMP tracking error limits is achieved.
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Fig. 6. Internal reinforcement through process of walking

V. CONCLUSIONS

Control level consists of the so-called ‘basic dynamic
controller’ was synthesized, consisting of a dynamic con-
troller for tracking robot’s nominal trajectory and a com-
pensator of dynamic reactions of the ground around the
ZMP based on GARIC reinforcement learning architecture.
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