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Abstract- We discuss the possibility of applying the tech-
niques of nonlinear wave mixing from nonlinear optics
to mesoscopic electron devices. Specifically, we focus on
phase-conjugation of electrons via degenerate four wave
mixing of de Broglie waves in a superconductor. It is
shown that for a beam of spin polarized electrons inci-
dent on a normal-superconductor junction, a time re-
versed backward propagating beam is generated similar
to the case in nonlinear optics. By adopting an opera-
tional definition of the phase, we show that it is possible
to infer the presence of the phase-conjugate field by the
loss of the interference pattern in a mesoscopic electron
interferometer.

1. Introduction

In contrast with the situation for classical fields where
one can readily define the phase of the field at each
point, there are considerable difficulties associated with
the definition of a quantum mechanical phase operator
φ̂ for bosonic fields. This problem has been discussed at
great length in quantum optics [1], where the measure-
ment of the phase of the electromagnetic field is of con-
siderable importance for interferometry. This work has
recently been extended to the context of Bose-Einstein
condensation [2]. With none of the numerous attempts
at formally introducing a phase operator for the electro-
magnetic field being fully satisfactory, Noh, Fougères and
Mandel adopted instead an operational approach based
on an analysis of what is actually measured in an ex-
periment, namely the relative phase between interfering
fields. It can be represented by a combination of photon
counting operators that depends on the particular exper-
imental scheme [3]. A similar approach has been adopted
for Bose-Einstein condensates [4].

For fermions the question of the phase of the field is
even more difficult than it is for bosons. Unfortunately,
one cannot define a phase operator or phase eigenstates
for an eigenmode of the Fermi field because of the Pauli
exclusion principle: since number and phase are canoni-
cally conjugate variables, a well-defined phase requires a
large uncertainty in particle number. Indeed, a straight-
forward generalization to fermions of the various phase
operators and phase states discussed for the eigenmodes
of bosonic fields leads to mathematically ill-defined re-
sults. Therefore, it would appear that if phase is to have
any meaning in Fermi systems, it must be associated with
a multimode collective effect.

Our goal is to show that despite the apparent difficul-
ties associated with the concept of phase for the eigen-
modes of fermionic fields, it is possible to introduce it in
an operational way. As a previous indication that this
might be possible, we recall that it is theoretically possi-
ble to operate interferometers with quantum-degenerate
fermionic beams, thereby measuring the relative phase of
the partial beams [5, 6].

Mesoscopic electron interferometers have been fabri-
cated over the last two decades that exhibit coherent
electron transport in structures that are smaller than
the electron coherence length, `φ = (Dτφ)1/2 where D
is the diffusion coefficient and τφ the time between phase
randomizing scatterig events[7]. These interferometers
exhibit an interference pattern as a function of the mag-
netic flux through the center of the interferometer due to
the Aharonov-Bohm effect where the electron phase ac-
quired through the interferometer is φ = 2π(e/h)

∫
A ·d`

[8]. Similar interferometers have been used to study the
coherent transmission through a quantum dot imbedded
in one arm of the interferometer[9]. More recently an
electronic version of the optical Mach-Zehnder interfer-
ometer [10] has been constructed from a two dimensional
electron gas [11]. In this interferometer, quantum point
contacts acted as beam splitters for the incident electrons
and ohmic contacts count the electrons from the two out-
put ports of the interferometer.

In polarizable media with nonlinear susceptibilities
[12], χ(n), it is possible to produce a light field that is the
phase-conjugate state of some incident signal light beam.
This process is known as optical phase conjugation and
occurs when the signal combines with a strong classical
laser field known as the pump inside a nonlinear medium
to generate an idler field that is the time-reversed state
of the signal field. This process can occur via three-wave
mixing in a χ(2) medium or by four-wave mixing in a
χ(3) medium [13]. In classical optics, phase conjugation
can be used to correct the phase aberrations incurred by
the signal field while in quantum optics, phase conjuga-
tion via four-wave mixing can lead to the generation of
squeezed states [14]. Here, we show that it is possible
to phase conjugate a beam of phase coherent fermions,
so that its evolution is “time reversed”. This is clear ev-
idence that from an operational point-of-view, that the
phase of a fermionic beam is a perfectly appropriate con-
cept.

Since matter waves interact via two-body collisions
there is no matter-wave analog of three-wave mixing.
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FIG. 1: Schematic diagram of input-output relations for fields
incident on superfluid Fermi gas.

However two-body collisions are analogous to a polar-
ization of the electric field P = ε0χ

(3)E3, which leads
to four-wave mixing of optical fields. Therefore one
can extend the discussions of four-wave mixing in op-
tics to matter-waves [15–18]. In order to achieve phase-
conjugation via four-wave mixing of fermionic fields, one
needs a c-number order parameter that is analogous to
the two counterpropagating pump lasers used in optical
experiments. This type of c-number field can be achieved
if the wave mixing occurs inside a superconducting mate-
rial where the BCS order parameter serves the same role
as the optical pump lasers.

2. Model

Specifically, we consider two counterpropagating beams
of fermions interacting with a phase-conjugate mirror
(PCM) see Fig. 1. This “mirror” is formed by a su-
perconductor at zero temperature confined in the region
0 ≤ z ≤ L, with a normal conductor in the region z < 0
and z > L. The extent of the gas in the x and y direc-
tions is taken to be infinite so that we can treat the gas as
being spatially homogeneous with density nF = NF /V
and volume V .

The phase-conjugate mirror is therefore described by
the linearized BCS Hamiltonian in the region 0 < z < L
[19],

H =
∑

k

[
h̄ωk

(
ĉ†k↑ĉk↑ + ĉ†−k↓ĉ−k↓

)

+ h̄∆
(
ĉ†k↑ĉ

†
−k↓ + ĉ−k↓ĉk↑

)]
(1)

where ωk = h̄k2/2m− h̄k2
F /2m and kF = (6π2nF )1/3 À

L−1 is the Fermi wave number of the gas. ∆ =
−|g|∑k〈ĉ−k↓ĉk↑〉 is the BCS order parameter [19] where
g < 0 represents the strength of the attractive interac-
tions and ĉkσ is the annihilation operator for an electron
of momentum h̄k and spin σ.

The electrons incident on the PCM at z = 0 are spin
polarized with momenta h̄k = h̄kẑ, k > 0. Similarly, at
z = L spin-down electrons are incident on the gas with
momenta h̄k = −h̄kẑ, k > 0. The number of atoms in
these beams, NB , satisfy NB ¿ NF so that the superfluid
electrons forming the PCM can be treated as undepleted.

Now consider a fermion initially located at z < 0 and
described as a wave-packet with average momentum h̄k0,
ψ(z, t) ∼ ψ(z − vk0(t − t0), 0) where vk0 = h̄k0/mn

is the group velocity and mn the effective mass in the
normal state conductor. When the atom enters the su-
perconductor it propagates with the new group velocity
v̄k0 = h̄k̄(k0)/ms where

k̄(k0) =
√

(ms/mn)k2
0 + 2msgnF /h̄2,

where ms is the effective mass in the superconductor
and gnF is an attractive Hartree-Fock potential. The
wave-packet therefore takes a time τk0 = L/v̄k0 to reach
the other end of the mirror. Similarly, a wave-packet
at z = L with mean momentum −h̄k0 takes a time τk0

to reach z = 0. The input fields are then related to
the initial conditions, ĉk↑[z = 0] = ĉk̄(k)↑(t = 0) and
ĉ−k↓[z = L] = ĉ−k̄(k)↓(t = 0). (To simplify the notation
we define ĉkẑσ = ĉkσ.) The output states, ĉk↑[L] and
ĉ−k↓[0], are then obtained by integrating the equations
of motion from t = 0 to τk.

The Hamiltonian H may be diagonalized by the Bo-
goliubov transformation

α̂k↑ = cos(θk/2)ĉk↑ − sin(θk/2)ĉ†−k↓, (2)

α̂†−k↓ = cos(θk/2)ĉ†−k↓ + sin(θk/2)ĉk↑, (3)

where αkσ is an annihilation operator for a quasipar-
ticle in the gas with energy h̄ζk = h̄

√
ω2

k + ∆2 and
tan θk = |∆|/ωk. By using the Bogoliubov transforma-
tion (2-3) and the solution of the equations of motion for
the quasiparticles, α̂kσ = α̂kσ(0) exp[−iζkt], one readily
obtains the output states in terms of the input states as

ĉk↑[L] = Tk̄(k)ĉk↑[0] + Rk̄(k)ĉ
†
−k↓[L] (4)

ĉ−k↓[0] = Tk̄(k)ĉ−k↓[L] + R∗̄k(k)ĉ
†
k↑[0] (5)

where

Tk = cos(ζkmL/h̄k)− i cos θk sin(ζkmL/h̄k), (6)
Rk = i sin θk sin(ζkmL/h̄k). (7)

Notice that phase conjugation only occurs when Rk 6=
0, the output states being then a superposition of the
transmitted input state plus its time-reversed state,
ĉ†−k↓[0] = T ĉk↑[0]T −1 where T is the time-reversal op-
erator. Note that Rk = 0 in the absence of a super-
fluid state, ∆ = 0, so that the existence of this state
is essential for the operation of the PCM. Just as is
normally the case in optics, the phase-conjugate mir-
ror has a finite bandwidth, since sin θk = |∆|/ζk is
only different from zero in the interval δk ≈ |∆|m/h̄kF

around kF . The phase-conjugate signal is therefore op-
timized by using an input state with average momen-
tum h̄k0 and bandwidth ∆k such that k̄(k0) = kF and
|k̄(k0+∆k)−k̄(k0−∆k)| < δk. In this case one can make
|RkF

| = 1 for L = (2j + 1)πh̄kF /2m|∆| for j = 0, 1, 2, ....

 
241 



3

3. Discussion

Since |Tk|2 + |Rk|2 = 1, there is no amplification of the
individual modes of the fermion beams, which is a di-
rect consequence of the Pauli exclusion principle. This
is in stark contrast to the case of bosons where one has
instead |Tk|2 − |Rk|2 = 1 [13]. The transmitted field
is therefore always amplified for bosons since |Tk| ≥ 1.
Note, however, that the total number of fermions in the
output beams can be amplified. To see this, we take for
definiteness the input state of the fermion beams to be

|Ψ〉 =
∏

|k−k0|≤∆k

ĉ†k↑[0]|0〉 (8)

with k0 > ∆k > 0. This corresponds to a beam of spin-
up fermions with momenta centered around h̄k0 incident
from z < 0 with no particles incident from z > L. The
occupation numbers for this state are nk = 〈ĉ†k↑[0]ĉk↑[0]〉.
Defining the total number operators for the input and
output fields as N̂

(in/out)
↑ =

∑
k>0 ĉ†k↑[0/L]ĉk↑[0/L] and

N̂
(in/out)
↓ =

∑
k>0 ĉ†−k↓[L/0]ĉ−k↓[L/0], one finds that

their expectation values are,

〈N̂out
↑ 〉 = 〈N̂ in

↑ 〉+ 〈N̂out
↓ 〉 (9)

〈N̂out
↓ 〉 =

∑

k

|Rk̄(k)|2(1− nk). (10)

Eqs. (9) and (10) show that the number of atoms in
both beams increase after having passed through the gas.
However, Eq. (10) shows that the increase results from
the scattering of electrons out of the superfluid into those
modes that are not occupied in the incident beam. Con-
sequently, only incoherent amplification of the vacuum
fluctuations occurs.

The identical increase in both beams reflects the un-
derlying pair creation process given by the ĉ†k↑ĉ

†
−k↓ term

in the Hamiltonian, as well as the fact that the num-
ber difference operator, ĉ†k↑ĉk↑ − ĉ†−k↓ĉ−k↓ commutes
with the Hamiltonian. Defining the covariance matrix
as Cov[N̂out

σ1
N̂out

σ2
] = 〈N̂out

σ1
N̂out

σ2
〉 − 〈N̂out

σ1
〉〈N̂out

σ2
〉 we find

that

Cov[N̂out
σ1

N̂out
σ2

] =
∑

k

|Tk̄(k)|2|Rk̄(k)|2(1− nk) (11)

which shows that the number fluctuations in each of the
spin polarized beams that have passed through the PCM
as well as the correlations between these beams are the
same. Again, this reflects the fact that an electron with
definite spin created in one beam coincides with the cre-
ation of an electron of opposite spin in the other beam so
that the fluctuations in both beams must be the same.

Eqs. (10) and (11) show that for |Rk̄(k)| = 1 one can
have amplification with no fluctuations. Thus by using
an input state in which all the k states are fully occu-
pied except for a narrow window of width ∆k centered at
k0, one can have amplified output beams with negligible
number fluctuations provided k̄(k0) = kF , |k̄(k0 + ∆k)−

k̄(k0 −∆k)| < δk, and L = (2j + 1)πh̄kF /2m|∆|. How-
ever, since these are the same conditions required for a
finite phase conjugate signal, one cannot simultaneously
have a phase conjugate signal and an amplified output
with reduced fluctuations.

These results show that despite the lack of a well-
defined phase for fermionic fields, the phase-conjugation
and time-reversal of these fields is readily possible in prin-
ciple. In the present example, the phase-conjugate signal
provides a direct signature of the BCS state since for a
Fermi gas in the normal state, an incident beam of fermi-
ons would not generate a backward propagating reflected
beam.

As an example to illustrate the effect of the PCM on
electron transport, we consider an electronic version of
the optical Michelson interferometer shown in Fig. 2.
We will show how phase-conjugate beams of fermions can
compensate the relative phase accumulated between the
two paths of the interferometer when one of the mirrors,
M1 or M2, is replaced by a phase-conjugate mirror. Here,
BS labels a beam splitter with transmission and reflec-
tion amplitudes t and r, respectively, with |r|2 + |t|2 = 1
and rt∗+r∗t = 0 while D represents an electron counter.
`1 and `2 are the one way path lengths in the two arms
of the interferometer, which are assumed to be much less
than `φ. The operators âk and b̂k denote annihilation op-
erators for electrons with momentum h̄k that are incident
on the two input ports of the interferometer. The input
states only involve a single spin state so we drop the spin
label for convenience. The outputs of the beam splitter
are ĝk = râk + tb̂k and f̂k = tâk + rb̂k. After propagation
through the arms and recombination at the beam splitter,
the fermion annihilation operator at the atom counter is
d̂k = rt(e−i2k`2 + e−i2k`1)âk + (r2e−i2k`2 + t2e−i2k`1)b̂k.
Using an input state of the same form as Eq. (8),
|Ψ′〉 =

∏
|k−k0|≤∆k â†k|0〉, we find that the number of

atoms at D, 〈N̂D〉 =
∑

k〈d̂†kd̂k〉, is

〈N̂D〉 = 2|r|2|t|2NB

(
1 + cos(∆`k0)

sin(∆`∆k)
∆`∆k

)
(12)

where ∆` = 2(`1 − `2) and NB is the number of inci-
dent atoms. There is a discernible interference pattern in
the ”white light interferometry” regime [20], ∆`∆k ¿ 1.
However, the broadband nature of the Fermi beam leads
to a loss of contrast due to dephasing between different k
for large path differences, ∆`∆k À 1. Even though the
incident fermions are in Fock states, which for the sake of
argument can be regarded as a classical field with random
phases φk for each of the occupied k-states, this phase is
the same in both arms of the interferometer so that the
phase difference between the arms is independent of φk.

We now replace the mirror M2 by a phase-conjugate
mirror. The reflected output of that mirror is f̂ ′k =
R∗̄

k(k)
f̂†ke+ik`2 + Tk̄(k)ĉk where ĉk is an annihilation op-

erator for the fermions incident on the other side of
the mirror in the opposite spin state, see Eqs. (4-5).
The annihilation operator for fermions at the counter is
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FIG. 2: Schematic diagram of a Michelson interferometer.

now d̂k = te−i2k`1(râk + tb̂k) + R∗̄
k(k)

r(t∗â†k + r∗b̂†k) +

rTk̄(k)e
−ik`2 ĉk, which, again using |Ψ′〉, gives 〈N̂D〉 =

∑
k

(
|rtTk̄(k)|2Θ(∆k − |k − k0|) + |rRk̄(k)|2

)
where Θ is

the unit step function. In this case, there is no detectable
interference pattern. To understand this we note that the
phase in arm 1 is 2k`1 +φk while the accumulated phase

after round trip propagation in arm 2 is −φk due to the
phase-conjugate mirror. Since φk is a random variable,
there is no interference pattern since the average phase
difference between the arms is zero. A similar effect has
been predicted for chaotic bosonic fields [21]. Based on
our semi-classical analogy, we see that if φk ≡ 0 then
there would still be an interference pattern of the form
(12) but with ∆` = 2`1 since the path length of arm 2 is
zero due to the time reversal of the PCM. Therefore even
in the limit of a monochromatic beam, the absence of the
ensemble average interference pattern is attributable to
the random phases, φk, associated with each mode.

4. Conclusion

In conclusion we have shown that one can directly probe
the phase of individual electron states via a process anal-
ogous to optical phase-conjugation. We have shown that
this phase, although random, can have observable effects
in an electron interferometer. Future work will examine
the role of environmental dephasing on the phase conju-
gate signal [22].
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