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Abstract – Electro-optical properties of MoS2 nanotubes
are considered. To this end the necessity of the relax-
ation of the simply folded layer configuration is analyzed,
and three regions are found: when it is necessary (narrow
tubes), when it can be simulated by the layer stretching
(tubes of diameters within 50-200Å), and when it can be
avoided (thick tubes). Full symmetry implemented density-
functional tight-binding method is used to find the elec-
tronic bands for number of tubes of different chirality, and
some characteristics (direct/indirect gap chirality and di-
ameter dependence) of the band structures are singled out.
Finally, optical transitions selection rules are derived and
used to calculate optical response functions.

1 INTRODUCTION

Although the transition metal disulfide nanotubes have
been synthesized [1, 2] soon after the discovery of the car-
bon ones, their theoretical studies are restricted to very
few papers on electronic band calculations [3, 4], symme-
try [5] and Raman active phonon modes [6]. On the other
hand, there is a number of experimental reports on optical
absorption [7], Raman spectra [8], field emission [9] and
shear and Young’s moduli [10] measurements. Here we
start analysis of the optical spectra of MoS2 nanotubes.

2 FOLDED CONFIGURATION AND SYMME-
TRY

Symmetry and the classification of single wall MoS2 nan-
otubes is determined with the help of the symmetry of an
unfolded diperiodic layer, in the same way as for carbon
nanotubes.

Single MoS2 layer (Fig. 1) consists of two parallel hexag-
onal sulfur planes at the distance 2δ = 6.37 Å, with lattice
vectors a1 and a2 of the length a0 = 3.16 Å. Configura-
tion with sulfur atoms of different planes one just above
another is preferable. Molybdenum plane, in the middle
of the sulphur ones, has the same lattice, only the atoms
(dark circles) are translated by (a1 + a2)/3, being thus
at the centres of the sulphur triangles. This way, elemen-
tary cell contains two sulfur and one molybdenum atoms.
The single layer symmetry group is diperiodic group Dg78
(p6̃m2).

Single-wall MoS2 nanotube (n1, n2) can be viewed as the
layer folded such that the chiral vector c = n1a1 + n2a2

becomes circumferential of the cylinder. Obviously, the
pair (n1, n2) uniquely determines all the structural prop-
erties of the corresponding nanotubes. Particularly, the
symmetry of the nanotube is described by one of the line
groups [5]: chiral (n1, n2), zig-zag, (n, 0), and armchair

Figure 1: MoS2 single layer. Open circles stand for the
sulfur, and filled ones for the molybdenum atoms.

tubes (n, n) (shown in Fig. 2) have line groups from the
first, eighth and fourth family, respectively:
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(R = GCD(2n1 + n2, n1 + 2n2)/n, φ is Euler’s function).
Single wall tubes are three-orbit systems, i.e. their

symmcell (the set of orbit representatives, i.e. the min-
imal set of atoms from which the symmetry group gen-
erates the whole structure) contains two sulfur and one
molybdenum atom (Fig. 2, upper left panel). Positions
of these representative atoms are also defined by the tube
indices n1 and n2:
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Figure 2: Symmcell and tubes of different types (zig-zag
(15,0), chiral (13,7) and armchair (10,10)).

Sout :
(

D + δ

2
, 0, 0

)
, (6)

Mo :
(

D

2
, ϕ0, z0

)
,

where the molybdenum layer diameter is

D = a0

√
n2
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2, (7)

while, the ϕ and z cylindrical coordinates of the molyb-
denum symcell atom (x-axis is chosen through the sulfur
atoms) are:
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n2
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, (8)
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3 RELAXATION

However, the described rolled-up layer configuration is not
equilibrium one, as the curvature induced additional ten-
sions with respect to layer. Therefore density functional
relaxation method is applied to find the stable configu-
ration. The symmetry is implemented also in these cal-
culations. In fact, instead of varying all the atomic co-
ordinates, we apply the topological theorem [11] that the
extremes of the invariant functions are on the manifolds
with extremal symmetry. Therefore, only the coordinates
along which the symmetry is not decreasing (with respect
to simply folded configuration) are varied. Obviously, this
means that only symcell atoms coordinates are degrees of
freedom. Precisely, choosing x axis through the interior
sulfur atom, it remains to check only its diameter, and six
coordinates of molybdenum and outer sulphur. For zig-
zag tubes, to preserve vertical mirror plane also ϕ of the
last two atoms is fixed to zero, as well as in the armchair

tubes, due to the horizontal mirror plane z coordinates
vanishes. In addition, the translational period of the tube
is varied, as the only continual symmetry parameter.

We performed density functional relaxation within
tight-binding [12] prescription (DFTB). It turns out that
for the tubes with diameters greater than 200 Å the relax-
ation effects are negligible, while between 60 Å and 200 Å
relaxed configuration is very well described as the rolled-
up one, but with the layer with the increased lattice con-
stant a0 for 0.25 Å. Below 60 Å, various effects of curvature
can be seen.

As the usually synthesized tubes have diameters greater
than 200 Å, they can be treated without relaxation. How-
ever, most of their properties are similar to the bulk.
Therefore, the most interesting tubes are with the diame-
ters less than 50 Å, and for them the relaxation procedure
is necessary, but it can be substituted by the stretching of
the layer. Finally, for the narrow tubes the relaxation is
unavoidable.

4 ELECTRONIC BANDS

Electronic bands are calculated numerically, implement-
ing the full line group symmetry. Underlying theoreti-
cal methods are based on the modified Wigner projectors
technique (MGPT) [13]. In solid state physics, Bloch the-
orem enables to reduce the eigenproblem to the elemen-
tary cell; however, in the case of nanotubes elementary
cell contains huge number of atoms, and usual methods
of diagonalization of hamiltonian are time consuming, or
even non applicable on available computers. Recently, the
method has been developed to reduce exactly the eigen-
problems to symcell. Also, instead of the whole symme-
try group, only the generators are used. This technique
is fully implemented within POLSym code [14], designed
for symmetry based calculations of electronic, phonon and
photonic bands, their assignation by the complete set of
the conserved quantum numbers, and various applications.

Electronic bands and the corresponding generalized
Bloch functions are calculated within tight binding ap-
proximation, using the density functional input data for
(radius vector dependent) two-center hamiltonian and
overlap matrix elements. The atomic orbitals are the
Slater type ones, obtained also by the density functional
method [12, 3]. Particularly, for the sulphur atom one 3s
and three 3p Slater type orbitals are used, while one 5s,
three 5p and five 4d orbitals for molybdenum. The elec-
tronic bands are calculated for a number of nanotubes.

Results for the tubes (35,35) and (60,0) are shown in
Fig. 3 and Fig. 4. In general, according to the symmetry,
the bands, together with the corresponding Bloch eigen-
functions are assigned by the angular momentum quantum
number m. Only for the achiral tubes there is also a parity
quantum number: for zig-zag tubes, vertical mirror parity
Πv = ±1 characterizes m = 0 and m = n bands through-
out Brillouin zone, while for armchair ones, Πh = ±1 is
relevant for the same bands but only in the Γ point.

Some significant conclusions can be made directly from
the electronic bands structures. The tubes are semicon-
ducting, with the gap slightly increasing with the diame-
ter, and rapidly saturating at the value of 1.5 eV of MoS2
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Figure 3: Electronic bands of the armchair tube (35,35).
Upper panel: whole DFTB band structure. Lower panel:
vicinity of the Fermi level.

bulk (D = ∞ limit). Near Fermi level structure of the
same diameter tubes is chirality dependent. This is il-
lustrated in the Fig. 3 and Fig. 4, for the same diam-
eter D ∼ 60 Å nanotubes (60,0) and (35,35). The gap
of the both tubes is about 1.2 eV. However, the former
one is direct gap semiconductor with the highest occupied
molecular orbital (HOMO) and lowest unoccupied molec-
ular orbital (LUMO) at k = 0, while the armchair tube
has indirect gap (HOMO at the center of the zone and
LUMO at k = 2π

3a ). Still, the density of electronic states
near Fermi level shows no significant difference (Fig. 5).

5 OPTICAL CONDUCTIVITY

All the optical response functions are derived from the
optical conductivity tensor σ, which is within time depen-
dent perturbation theory calculated from the band struc-
ture and corresponding Bloch eigenstates according to the
expression:

Re[σab(ω)] = (10)
C

ω

∑

if

〈i | pa |f〉〈f | pb | i〉δ(Ef − Ei − h̄ω)ni(1− nf ).

Figure 4: Electronic bands of zig-zag tube (60,0). Upper
panel: whole DFTB band structure. Lower panel: vicinity
of the Fermi level.

Here Ef and Ei refer to the energies of the initial and final
Bloch states |i〉 and |f〉. Therefore, it is important to find
the transition matrix elements involved in 10. At first we
employ the optical transitions selection rules

kf = ki, mf = mi + m, (11)
Πv

fΠvΠv
i 6= −1 Πh

fΠhΠh
i 6= −1. (12)

The last selection rules refer to the achiral tubes only.
The calculations are performed for symmetry momentum
components p0 = pz and p± = px ∓ ipy, corresponding to
the light polarized along tube axis (z), and perpendicular
to it positive and negative circular polarization. For p0

the quantum numbers are k = 0, m = 0, Πv = 1 and
Πh = −1, while for p± one has k = 0, m = ±1, Πv = 0
and Πh = 1.

Direct consequence of symmetry is that the optical con-
ductivity tensor σ of single wall MoS2 tubes is diagonal
with two independent tensor components [5]: σ|| = σz =
σzz and σ⊥ = σxx = σyy. Therefore only these two com-
ponents are calculated.

Optical conductivity for narrow zig-zag tubes with di-
ameters within 10-16 Å is shown on Figure 6. Optical con-
ductivity for light polarized parallel to tube axis and for
the perpendicular circular polarization is slightly depen-
dent on tube diameter. Transition energies (position of
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Figure 5: Electron density of states for thick tubes.

peaks) follow gap increase with the diameter. Note that
the gap of these tubes is lower than 1 eV, being much
less than in bulk or layered structure. In comparison with
electro-optical properties of carbon nanotubes [15] some
important differences are found. Absorption intensities for
parallel and perpendicular polarization differs a lot, but in-
tensity for parallel polarization is three or four times larger
than intensity for perpendicular polarization. Absorption
for parallel polarization in the case of carbon nanotubes
is at least order of magnitude larger than absorption in-
tensity for perpendicular polarization. Next difference is
that the transition energies for parallel and perpendicu-
lar polarization are almost the same. In other words liner
dichroism effect is weak. This effect is easy to understand
in the view of huge number of bands near gap (Fig. 3 and
Fig. 4), making always possible to find two close bands
allowing transitions with both light polarizations.

For wider armchair tubes with D within 26-32 Å, the di-
ameter signature in absorption spectrum vanishes (Fig. 7).
In fact, the saturation is mostly achieved for this thick-
ness, as visible also from the band gap: it is close to 1.5
eV, corresponding to bulk. Absorption intensity ratio re-
mains close to narrow tubes, and dichroism is very weak,
again.

Optical conductivity for three wide tubes with almost
the same diameter and different chirality is shown in Fig-
ure 8. Absorption energies are the same for all tubes but
intensities are different. Armchair tube absorbs light for
any polarization more intense than zig-zag and chiral tube.
The vanishing of diameter dependence in absorption spec-
trum of wide tubes shows that DFTB based calculation
has a good limit, or absorption spectrum becomes close to
bulk one as diameter increasing.

6 SUMMARY

The full symmetry implemented electronic band calcula-
tion of MoS2 nanotubes is used to predict some of the
optical properties of these structures. It is observed that
the diameter dependence of the gap is clearly manifested
in the optical spectra, which can be applied in the optical

Figure 6: Optical conductivity for zig-zag tubes.

nanodevices. However, this effect saturates for the tube
thickness larger than 30 Å. The chirality of the tubes de-
termine if the gap is direct or not. Also, it is stressed out
that for the synthesized tubes the configuration is either
purely folded one (for thick tubes) or folded after layer
stretching (tubes with diameters 60-200 Å).

Acknowledgements

This work was supported by Serbian Ministry of Sci-
ence (project MNTR-1924), Slovenian-Serbian project BI-
CS/04-05-037, and German DAAD projects A/0406460,
A/0406461. Authors are grateful to Dr. Maja Remškar
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Figure 7: Optical conductivity for armchair tubes.
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