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Abstract – We investigated the power spectrum of thermal 
radiation in one-dimensional ordered structures consisting of 
alternating layers of two materials with positive and negative 
refractive index. We utilized an indirect approach based on 
the Kirchoff’s second law and applied the transfer matrix 
method to calculate emittance in thermal equilibrium starting 
from the transmittance and reflectance of the structure. We 
used the obtained emittance to derive the power spectrum of 
the multilayer structure under investigation. We analyzed 
both on-axis and off-axis radiation. We compared the results 
with those obtained for conventional one dimensional 
multilayer all-dielectric films.  

1. INTRODUCTION 

 Negative refractive index metamaterials (NRM) are 
artificial composite subwavelength structures with effective 
electromagnetic response functions (permittivity and permea-
bility) artificially tuned to achieve negative values of their 
real part [1]. These materials were theoretically predicted by 
Veselago [2],  rediscovered by Pendry [3], experimentaly 
confirmed by Smith [4] and both experimentaly and 
theoretically investigated by many different teams (see e.g. 
[1] and references cited therein). 
 The underlying principle in constructing NRM relies on 
the appearance of effective permittivity and permeability 
both lower than zero in the same well defined frequency 
band. The analyticity of refractive index regarded as a 
complex function and the causality principle require that the 
real part of the refractive index also be negative [5]. A 
consequence is that the product of the electric and magnetic 
field vectors is antiparallel with the wave vector, i.e. we deal 
with backward waves whose phase velocity is antiparallel 
with Poynting vector, while electric, magnetic field and wave 
vector form a left-oriented set. This is the reason why such 
structures are sometimes called "left-handed materials" 
(LHM). 
 Many interesting phenomena not appearing in natural 
media were predicted and observed in double negative 
materials. These include negative refraction (the reversal of 
the Snell's law), perfect lensing [6], the appearance of 
subwavelength resonant cavities [7], reversal of Cherenkov 
radiation etc. 
 An interesting topic of investigation is the distribution of 
electromagnetic modes in layered structures incorporating 
negative index materials. The use of conventional photonic 
crystal structures to modify thermal radiation was 
investigated by Cornelius and Dowling [8]. Subsequent 
theoretical and experimental results on the same topic include 
[9]-[11]. 
 Until today, no comprehensive analysis of the influence 
of the NRM media to the thermal radiation distribution 
appeared in literature. In [12] a modification of Planck law in 
NRM was derived relying on a simple quantized field 
description. There are few other papers dealing with the 
quantum field description of NRM-related phenomena and 
some interesting phenomena that arise from it, like the 

modification of spontaneous emission [13] and  super-
radiance effect [14]. 
 In this paper we investigate the modification of thermal 
radiation power spectrum by one-dimensional structures 
incorporating both NRM and conventional materials. We 
analyze periodic 1D structures and include both normal and 
oblique wave incidence. We use an indirect method based on 
the second Kirchoff’s law for thermal radiation to investigate 
the emittance of blackbody when a photonic crystal 
incorporating NRM is used as a filter on a thick blackbody. 
In our calculations we use the well known transfer matrix 
technique [15], [16]. 

2. THE PLANCK LAW IN NRM 

 Since metamaterials are structured on a subwavelength 
scale, it is assumed that their magnetic and electric response 
can be described by effective permeability µ and permittivity 
ε. A practice often met in literature when investigating NRM 
is to analyze the cases with frequency independent ε and µ 
[17]-[20], but a realizable metamaterial must be dispersive 
and lossy in order to preserve causality principle [5].  
 For the sake of simplicity we assume that both effective 
permittivity and permeability are of the same form 
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In our calculations we assume that dumping is negligible, 
which is an acceptable approximation even from the experi-
mental point of view [4]. When lossy metamaterial is 
considered, a common assumption in literature is that the 
dumping factor is given as a fraction of plasma frequency 
[21]. 

An expression for the Planck radiation law in NRM 
media was obtained in [12] by following a simple quantized-
field description for radiation in negative-index material, 
which was assumed to be isotropic and absorptionless at 
frequencies of interest.  The approach was based on modified 
Einstein coefficients of spontaneous emission and absorption 
in the light of a simple electric dipole transition picture. 
Similar results were obtained in [13], [14].  

Here we follow another much simpler formal procedure 
in deriving the Planck law in NRM and apply the 'photonic 
picture' approach applicable to any media described by 
dispersive refractive index [22]. The density of states per 
volume of a photon set occupying a range of impulses 
( ),p p dp+
r r r  is )/4(2)( 32 hdpppdG π= , where p k=

rr
h  and 

k
r

 is the photon wavenumber, while the factor 2 is due to the 
number of polarizations and h3 stems from Heisenberg 
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relations. We assume the standard free-space boundary 
conditions. The density of photons can be derived by 
multiplying the density of states by the mean number of 
photons occupying the given range. The mean number of 
photons is described by the Bose-Einstein distribution 

( )[ ] 11/exp)( −−= kTcppN . Thus we arrive to an expression 
for the density of photons within a given range of impulses 
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where ( )ωn  is the dispersive refractive index and 
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 The above expression is valid for NRM without absorp-
tion. The same expression was derived in [12] starting from 
the quantized-field approach for isotropic, dispersive and 
lossless media. Although our approach is formal and is 
characterized by a lack of distinction between NRM and 
ordinary media, it is much simpler and faster in obtaining the 
result given by the lengthier ab initio derivation [12]. 
 As   we  can see from (4) the Planck’s law in NRM media 
differs from that in the free-space by a factor describing the 
dispersive properties of the media 

 ( ) ( ) ( ) ( )ωγωωρωρ 2../ nSFDNG =  . (5) 

 For the dispersion relations we use the simple form (2) to 
establish the modification factor of the power spectral density 
of equilibrium radiation within NRM versus that in vacuum 
as 

 ( ) ( ) ( )( ) ( )( )2222 /1/1 ωωωωωγω ppn +−=  . (5) 

2. THERMAL RADIATION AND PHOTONIC 
CRYSTAL CONTAINING NEGATIVE INDEX MEDIA 

 We consider a system in thermal equilibrium at a given 
temperature, its radiation having a Planck's blackbody (BB) 
spectrum. From the point of view of prospective practical 
applications, the blackbody radiation may be modified using 
a photonic crystal filter and thus altering the spectral 
emissivity of the BB radiator and/or changing the angular 
distribution of the radiation. This was done in [8] for the case 
of purely positive-media structures. 
 In a most general case the photonic crystal filter may have 
a full 3D periodicity (or even be quasi-periodic). According 
to the John and Wang model [8], under certain conditions 
this can be reduced to a 1D case without a loss o generality. 
 To calculate the modification of thermal radiation, it is 
necessary to determine the thermal emmittance E of the 
photonic crystal. This is done by an "indirect" method based 
on the Kirchoff’s law of detailed balance. According to it a 
material’s emmittance in thermal equilibrium is proportional 
to its absorbtance, and for a blackbody they are equal [8]. 
The absorptance is defined by the reflection and transmission 
coefficient, A = 1 − R − T.  Once the emittance is obtained, its 

multiplication by the Planck power spectrum gives the power 
spectrum of the PBG emitter ( )ωρ PBG  in terms of its 
emittance ( )ωPBGΕ  and the blackbody spectrum ( )ωρ BB  

 ( ) ( ) ( )ωρωωρ BBPBGPBG E=  . (6) 

 Fig. 1 represents a photonic band gap (PBG) structure 
selected to modify the mode density of radiation of the 
emitting substrate S. In a general case it contains both 
positive index materials and NRM. The structure inhibits 
thermal emittance from the substrate at frequencies within the 
PBG, but enhances it at the band-edge. This result is 
confirmed for the case of all-dielectric and metal-dielectric 
positive index PBG materials both theoretically [10] and 
experimentally [11]. 
 

nA,dA nB,dB nS,dS>>dA,dB 
1

R

T

0

N unit cells 

S

unit cell 

Fig. 1. Basic 1D PBG structure for emissivity control 

 The structure is composed from two media with refractive 
indices (nA, nB) and a geometrical thickness (dA, dB), A and B 
denoting the conventional and the NRM slabs, respectively. 
The structure is deposited on a thick substrate (d>>λ) with an 
index nS. We chose layers with a quarter-wavelength optical 
thickness nAdA=nBdB=λ0/4. Hence, the phase shifts in the 
corresponding layers are δA=(π/2)Ω and δB=(π/2)Ω where 
Ω=λ0/λ=ω/ω0 is normalized frequency. The entire structure is 
surrounded by a medium n0 (air or vacuum). 
 The transfer matrix technique which includes material 
dispersion and absorptive losses [15],[16] can be used to 
compute transmission and reflection coefficients and the 
power spectrum. We apply it using interface matrices Mαβ 
(α,β denote a or b at the interface) and propagation matrices 
Mγ (γ denotes a or b of the given layer). 
 Mαβ=1/2[1+nβ/nα 1-nβ/nα; 1-nβ/nα 1+nβ/nα]  and  (6) 
 Mγ= [exp (-iδγ) 0; 0 exp (iδγ)], δγ=2πnγLγ/λ  . (7) 
 The product of Mαβ and Mγ uniquely describes wave 
propagation through the multilayer. In the case of oblique 
incidence the matrices (6), (7) retain the same form, but the 
nα is replaced by nα cos(θα) in the propagation matrices for 
both s- and p-polarization, nα→ nα cos(θα) for s-polarization 
and nα→ nα /cos(θα) for p-polarization in the interface 
matrices.  θA, θB are the incident angles for the case of 
oblique incidence. The overall transfer matrix for a chosen 
structure is the product of the interface and the propagation 
matrices. The transmittance and the reflectance stem from the 
overall transfer matrix which has the form M= [m11 m12; m21 
m22]. For a periodic structure composed from two media A 
and B, surrounded by a medium C the overall transfer matrix 
is given  by   M = MCA T (N-1) (MA MAB MB MBS MS MSC),  
where  T1= MA MAB MB MBA is the unit cell transfer matrix 
and N denoting the number of unit cells. 
 T=│t│2  R=│r│2  where t=1/m11 and r=m21/m11 . (8) 
 In our investigation we consider  isotropic media for both 
non-dispersive and dispersive cases. 
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3. RESULTS AND DISCUSSION 

 Figs. 2a-2c show the calculated emissivity of NRM-
containing 1D PBG structures for different polarizations. For 
a comparison, we also calculated the emissivity of an all-
dielectric PBG material. Fig. 2d shows this emissivity for the 
unpolarized case. We obtained similar dependencies for s- 
and p-polarizations (not shown here). The dependence in Fig. 
2d llustrates a problem pertinent to all positive-material PBG 
filters: such structures can either have an optimum 
performance in a very narrow wavelength range for all 
incident angles, or for a larger wavelength range, but for a 
very limited spatial angle. This is not the case with the NRM-
containing filters. Fig. 2a-c shows that the angular 

dependence in emittance spectrum is much less prominent 
than in ordinary PBG structures. This points out to the 
possibility of designing efficient NRM filters almost 
insensitive on the radiation propagation angle. Structures 
containing NRM influence differently the thermal radiation 
spectrum in comparison to ordinary media PBG structure. 
The suppressed region of thermal radiation is wider, and the 
spectral characteristics more flat, i.e. without sharp 
oscillation typical for positive index materials. The influence 
of the angle of incidence is less noticeable than for the 
corresponding ordinary structures. The emittance shows no 
ripples and no sharp frequency shifts between polarizations. 
Such behavior is a result of phase compensation [23], [24]. 

 
a)                                                                                  b) 

 
c)                                                                               d) 

Fig. 2. Emittance as a function of incident angle θ and normalized frequency ω/ ω0 for NRM-containing 1D PBG, 5 periods, 
nA=1.41 nB= –2;  a) TE-mode polarized emittance ETE; b) TM-mode polarized emittance ETM ;  c) unpolarized E=1/2 (ETE 

+ETM); d) unpolarized case, positive index material, nA =1.41 nB=2. In all cases nS=3+i0.3 for the substrate. 
 

   
Fig. 3. Left: emittance E(ω,θ) as a function of incident angle θ and normalized frequency ω/ω0 for unpolarized case, where 

n2(ω/ ω0)=1-3 (ω0/ ω)2 and ω0=2πc/λ0-quarter-wavelength frequency (at this frequency n2= –2) n1=2,L1=0.25 λ0/n1, L2=0.25 
λ0/n2, L3=10 λ0/Re(n3); right: refractive index dispersion for the NRM part 
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 Fig. 3 depicts a realistic case of NRM including dispersi-
on and clearly shows the existence of full phase 
compensation in the emittance spectrum (the peak values in 
the E(ω,θ) dependence).  
 Similar to zero-n photonic band gap [18], also obtained 
by stacking alternating layers of positive index materials and 
NRM but furnishing transmission minimum, this phase 
compensated situation arises when the averaged effective 
refractive index of the structure equals zero. The resulting 
narow transmission peak is invariant with respect to a length 
scale change and insensitive to angular dependence. There is 
a shift toward higher frequencies in spectral emittance for 
phase compensated situation in Fig. 3 for larger angles. The 
same feature can be observed both in periodic and in quasi-
periodic spectra. 
 The quasi-periodic filter geometries are another situation 
of interest. Their band structure complexity is increased and 
sharp resonances appear [24].  Similar to periodic structures, 
quasi-periodic NRM multilayers also exhibit a strong 
influence of phase compensation to transmission [24]. 
Spectral self-similarity and narrow resonance spectral peaks 
occur, which has an applicative potential itself.  

4. CONCLUSIONS 

 We analyzed modification of Planck's blackbody spectra 
by periodic structures incorporating NRM. Similar to 
positive-index photonic crystals to which such structures are 
related, they can be used to enhance, suppress or attenuate 
spontaneous emission in all or certain directions by changing 
the density of modes. The paper handles the case of finite 
structures and does not consider the less realistic case of 
infinite crystals. Our results show that structures containing 
NRM show larger influence to the thermal radiation spectrum 
than all-dielectric PBGs. The suppressed region of thermal 
radiation is wider, and the spectral characteristics more flat, 
i.e. without sharp oscillation typical for the all-dielectric case. 
It can be also seen that the NRM -containing 1D structures 
are less dependent on the angle of incident radiation. The 
procedure presented here is of interest in designing special 
types of quasi-periodic layers for emittance tailoring and will 
be published elsewhere. The described approach can be 
generalized to 2D and 3D photonic crystals incorporating 
NRM media. 

REFERENCES 

[1] S. A. Ramakrishna, "Physics of negative refractive 
index materials", Rep. Prog. Phys. 68, pp. 449–521, 
2005. 

[2] V. G. Veselago, "The electrodynamics of substances 
with simultaneously negative values of ε and µ", Sov. 
Phys. Uspekhi, 10, pp. 509-514, 1968. 

[3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. 
Stewart, "Magnetism from conductors and enhanced 
nonlinear phenomena", IEEE Trans. on Microwave 
Theory and Tech., 47 pp. 2075-2084, 1999. 

[4] D. R. Smith, W. J. Padilla, D. C. Vier, D. C. Nemal-
Nasser, S. Schultz, "Composite medium with simultane-
ously negative permeability and permittivity", Phys. 
Rev. Lett., 84, pp. 4184-4187, 2000. 

[5] R. W. Ziolkowski, E, Heyman, Wave propagation in 
media having negative permittivity and permeability, 
Phys. Rev. E, 64, 056625.1-15, 2001 

[6] J. B. Pendry, "Negative Refraction Makes a Perfect 
Lens", Phys. Rev. Lett., 85, pp. 3966-3969, 2000. 

[7] N. Engheta, "An Idea for Thin Subwavelength Cavity 
Resonators Using Metamaterials With Negative 
Permittivity and Permeability", IEEE Ant. Wireless 
Propag. Lett., 1, 1, pp. 10-13, 2002 

[8] C. M. Cornelius, J. P. Dowling, "Modification of Planck 
blackbody radiation by photonic band-gap structures", 
Phys. Rev. A, 59, 6, pp. 4736-4746, 1999 

[9] S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, 
A. Goldberg, "Enhancement and suppression of thermal 
emission by a three-dimensional photonic crystal", 
Phys. Rev. B 62, No. 4, R2243-R2246, 2000 

[10] F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, 
S. Akiyama and K. Wada. "Optical characteristics of 
one-dimensional Si/SiO2 photonic crystals for 
thermophotovoltaic applications", J. Appl. Phys. 97, 
033529, pp.1-7, 2005 

[11] A. Narayanaswamy, G. Chen, "Thermal emission 
control with one-dimensional metallodielectric photonic 
crystals", Phys. Rev. B 70, 125101 1-4, 2004 

[12] P. W. Milonni, G. J. Maclay, “Quantized-field 
description of light in negative-index media”, Opt. 
Comm. 228, pp. 161–165, 2003 

[13] J. Kästel, M. Fleischhauer, "Suppression of spontaneous 
emission and superradiance over macroscopic distances 
in media with negative refraction", Phys. Rev. A 71, 
01180, 4, R1-4,  2005 

[14] J. Kästel, M. Fleischhauer, "Quantum Electrodynamics 
in Media with Negative Refraction", Laser Physics, 15, 
1, pp. 1–11, 2005 

[15] P. Yeh, Optical Waves in layered Media, John Wiley & 
Sons, 1988 

[16] M. Born, E. Wolf, Principles of Optics, Cambridge 
University Press, 1999 

[17] H. Cory, C. Zach, “Wave propagation in metamaterial 
multilayered structures”, Microw. Opt. Technol. Lett.  
40, 6,  pp. 460-465, 2004 

[18] J. Li, L. Zhou, C.T. Chan, P. Sheng, "Photonic Band 
Gap from a Stack of Positive and Negative Index 
Materials", Phys. Rev. Lett. 90, 8, 083901-1-4, 2003. 

[19] J. Li, D. Zhao, Z. Liu, "Zero- n photonic band gap in a 
quasiperiodic stacking of positive and negative 
refractive index materials", Physics Letters A, 332 
(2004) 461–468 

[20] J. Gerardin, A. Lakhtakia, "Spectral response of Cantor 
multilayers made of materials with negative refractive 
index", Physics Letters A 301, pp. 377–381, 2002 

[21] S. O'Brien, D. McPeake, S. A. Ramakrishna, J. B. 
Pendry, "Near-Infrared Photonic Band Gaps and 
Nonlinear effects in Negative Magnetic Metamaterials", 
Phys. Rev. B. 69, pp. 241101-1-4, 2004. 

[22] B. E. A. Saleh, M. C. Teich, Fundamentals of Photo-
nics, John Wiley & Sons, Inc., 1991 

[23] M. Maksimović, "Subwavelength resonant cavity based 
on phase compensation with removal of losses via 
optical gain", Proc. 48th Conf. ETRAN, Čačak, June 6-
10. 2004, 4, pp. 160-163 

[24] M. Maksimović, Z. Jakšić, "Spectral properties of 
periodic and fractal multilayers composed from 
metamaterials", Proc. 12. Telecom. Forum TELFOR, 
23- 25. 11. 2004, Belgrade, 9.10.1-4 

[25] E. L. Albuquerque, M. G. Cottamb, "Theory of elemen-
tary excitations in quasiperiodic structures", Physics 
Reports 376, pp. 225–337, 2003 

 

 
223 


