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Sadržaj – Razmatranje uticaja veličine fluktuacija na 
vremensku dinamiku procesa na površini materijala ima 
poseban značaj za nanostruktuirane katalizatore i procese 
koji se na njima odigravaju tokom sinteze i primene. U ovom 
radu je analiziran uticaj šuma na kinetiku procesa koji se 
odigravaju na površini katalizatora. Uvođenje graničnih 
uslova u odnosu na veličinu fluktuacija odražava se na prvo 
izlazno vreme dinamičkog sistema. Postavljena je 
metodologija za poredjenje teorijskih predviđanja i 
numeričke simulacije. 

1. INTRODUCTION 

 The study of the macroscopic fluctuations in extended 
systems is a challenging task since many important topics are 
still unraveled. Among them is the issue about the relation 
between the amplitude of the fluctuations and the long-term 
stability of the system. The latter calls for a boundedness of 
the fluctuations so that their amplitude does not exceed the 
thresholds of stability of the system. On the other hand, the 
exerting of the macroscopic fluctuations in extended systems 
implies certain spatial coherence of the local fluctuations. 
Otherwise, the lack of correlations would yield a permanent 
lack of macroscopic fluctuations for any signal that comes 
from the entire system. This is because the averaging of non-
correlated local fluctuations would yield permanently zero. 
However, it is not clear what is the physical mechanism that 
brings the spatial coherence and limits the development of 
the fluctuations.  

 Recently, a mechanism that brings about a spatial 
coherence of the local fluctuations has been proposed by 
Koleva [1]. The mechanism proposed, constitute of the non-
perturbative interactions on the surface, inducing the 
separation of the adsorption Hamiltonian into rigid and 
flexible parts and further non-radiative relaxation through the 
acoustic phonones. It is explicitly related to the boundedness 
of the macroscopic fluctuations [2]. One of its major 
consequences is that it generates new properties of the 
kinetics of surface reactions. It turns out that the spatial 
coherence of the fluctuations leads to chaotic properties of 
the state space and corresponding kinetics is characterized as 
the “chaotic” one.  

 The first task of the present paper is to evaluate explicitly 
the first exit time for the “chaotic” kinetics induced by the 
bounded fluctuations mechanism of Koleva [1]. The first exit 
time is the expected time when the system reaches for the 
first time an a priori given state. It is the one of the major 
properties of the stochastic dynamic systems. In the most 
interesting case it is the time needed for a fluctuation of a 
given size to appear for the first time. The estimation of the 
first exit time is important in the study of qualitative changes 
that happens in a system under the development of 
fluctuations of appropriate size. The qualitative changes can 
be: triggering of phase transitions, nucleation, change of the 
type of the dynamical regime etc. It should be stressed that 
such changes appears always, including exposure of a system 
to steady external constraints.  

 The second task is to define the appropriate modeling 
procedure for the stochastic dynamic processes on the 

nanostructured surfaces, which can be compared with the 
theory.  

 The foundations of the kinetics induced by the bounded 
fluctuations are briefly presented in the section 2. The 
evaluation of the first exit time is worked out in the section 3. 
Stochastic Monte Carlo simulation of the CO oxidation on Pt 
surface is described in section 4.  

2. KINETICS INDUCED BY THE BOUNDED 
FLUCTUATIONS 

 So far the major tools for the description of the 
fluctuations in extended systems are the mean-field approach 
and the master equation one. They are associated with the 
account for the fluctuations on different levels, namely the 
master equation is related to mesoscopic level and the mean-
field approach - with the evolution on macrolevel [3,4]. 

 However, in the case of the surface reactions it was 
demonstrated that the non-correlated mobility of the 
adspecies should yields a permanent instability of the adlayer 
[5]. Moreover, it seems that the non-correlated mobility of 
the species should makes the rates of all the elementary 
processes divergent [6]. Both mentioned consequences are 
contradictory to experimental observations. Therefore, in 
order to eliminate the source of the adlayer instability two 
new viewpoints to the coupling adlayer-surface has been 
introduced by the mechanism of Koleva [1]. First is the 
separation of the adsorption Hamiltonian into rigid and 
flexible parts, and seccond is the nonradiative relaxation 
through the acoustic phonones.  They ensure the suppressing 
of the adlayer instability and provide the boundedness of the 
rates of all the elementary processes. However, this happens 
at the expense of a coupling of the local fluctuations that 
makes the conjecture of the independence of the fluctuations 
inappropriate.  

 Yet, the spatial coherence of the fluctuations is necessary 
not only for providing the boundedness of the rates but to 
sustain a long-term stability of a system as well. Indeed, if 
the fluctuations are unbounded in size and space and develop 
independently one from another they would certainly 
produce local defects, such as local sintering, overheating, 
local reconstruction of the surface etc. Since the spatio-
temporal configurations of the fluctuations vary in an 
uncontrolled way, due time course this process could produce 
either reaction termination or system breakdown.  

 Thus, the long-range coupling of the fluctuations and its 
relation to the long-term stability of the system calls for a 
new approach to the evolution. It has been recently 
introduced [2] and was founded on the mechanism of 
Koleva. The new approach relays on the assumption that the 
distance between the successive states through which the 
system evolves is limited so that the system stays 
permanently within its thresholds of stability. This is an 
aspect of the general idea introduced in [7] that a system 
stays stable if and only if the fluctuations that it exerts are 
bounded so that the system stays permanently within its 
thresholds of stability. This general condition imposes the 
requirement that the kinetics should be such that the 
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increments of the state variables are always bounded. In the 
case of the surface reactions this requirement is met by the 
boundedness of the rates of all the elementary processes [2] 
achieved by the coupling of the local fluctuations.   

 The major property of the introduced new assumptions 
about the adlayer-surface coupling is that as a result of the 
coupling all the species share the same rate, called global 
one. However, the global rate exhibits permanent variations 
in the course of the time. Therefore, the kinetic equations that 
couple the concentrations of the reactant and intermediates 
and their rates are modified by Koleva with a stochastic part 
that is responsible for the enduring variations of the global 
rate. This gives rise to a permanent motion in the state space. 
It was stated before that the boundedness of the state variable 
increments in the mechanism of Koleva, leads to strong 
chaotic properties of the state space [2]. It should be stressed 
that described chaotic kinetics deals with the global rates 
without involving any averaging protocol. 

 The major outcome of the above considerations is that 
any extended natural system permanently exerts macroscopic 
fluctuations. However, they can cause qualitative changes 
such as triggering of nucleation, surface reconstruction, 
change of the reaction route, it can induce bifurcation etc. 
Moreover, it can happen at any value of the external 
parameters such as partial pressure of the reactants and the 
temperature. The necessary condition is the development of a 
fluctuation whose amplitude is equal to the “distance” to the 
critical value.  

 Moreover, it has been proven [2,8,9] that the 
boundedness makes the successive fluctuations to be 
separated by a “silent” time interval. It prevents any possible 
exceed of the limits imposed on the amplitude of the 
fluctuations. Thus, though each fluctuation is characterized 
by three parameters: amplitude, duration and “embedding” 
time interval, only one of them is independent. Hereafter, it is 
considered that it is the size of the fluctuation. 

3. FIRST EXIT TIME 

 A very important task is the evaluation of the first exit 
time, i.e. the expected time when the system reaches for the 
first time an a priori given state. Since the global rates exhibit 
everlasting fluctuations, it is to be expected the development 
of fluctuations of any admissible size in any system at any 
value of the external parameters. The task is complicated 
since the variations of the rates are set on the quantum level 
and their distribution cannot be specified a priori. Yet, the 
boundedness makes possible to work out certain 
generalization.  

 The first exit time has been studied for dynamical systems 
that exert small Gaussian fluctuations [10]. It has been found 
out that in general they follow the dependence: 
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where A  is the size of the fluctuations, i.e. the distance to 
the critical value, Acr  is the a priori given critical value and 
σ  is the variance of the fluctuations. 

 However, evidently, the frequency ( )f A  for occurrence 
of a fluctuation of large size A , is proportional to the 
probability for occurrence, and to the duration of a 
fluctuation of size A.  

 We are used to associate the frequency for an event with 
the probability for its emerging in a given time interval. 
Further, it is supposed that the probability uniformly 
converges to a well-defined limit on making the time interval 
infinitesimally small. So, in order to proceed accordingly, we 
decompose each fluctuation of a finite duration into a 
sequence of correlated infinitesimally thin “flash” 
fluctuations that emerges one after the other so that their 
envelop recover the original fluctuation. The probability for 
occurrence of a fluctuation of size A  comprises the term 
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distribution. The subject of our consideration are fluctuations 
whose short-range statistics is supposed to be arbitrary. 
However, the fundamental property of the considered in the 
present study fluctuations is their permanent boundedness. 
An immediate outcome of the Lindeberg theorem [11] states 
that every bounded irregular sequence (BIS) of infinite 
length has finite expectation value and finite variance. As a 
result, its distribution approaches the normal one. It should 
be stressed that the use of the normal distribution is relevant 
for the large coarse-grained fluctuations only. However, the 
short-range statistics has finite persistence a  so that 
a Athres<< , where Athres  is the threshold of stability. Thus, 
any coarse-graining over the persistence length smooths out 
the particularities of the BIS and the large coarse-grained 
fluctuations emerge according to the normal distribution. 

 Further, the association of the duration of a fluctuation 
with the frequency is grounded on the following 
considerations. The shape  is explicitly related to the 
fundamental conjecture called incremental boundedness 
introduced in [2]. It implies that not only the energy involved 
in each fluctuation is bounded, but the rate of its exchange is 
bounded as well. This idea is easily decoded if we associate 
any deviation from the expectation value with the energy 
involved. Then each fluctuation is composed by a sequence 
of elementary steps, so that the rate of exchanging energy is 
bounded in any time interval. Since the energy exchange may 
be either involved in or removed from the system, every 
fluctuation can be considered as a fractal Brownian walk 
where the “walker” is the energy involved in the system. The 
fractal Brownian walk sets a general relation between the 
size of a fluctuation and the time for its execution ∆ - 

( )A∝∆ ∆µ , where ( ) ( )µ ∆ ∈ 0 1,  . The value of ( )µ ∆  is 
strongly related to the short-range statistics. To elucidate this 
let us come back to the idea about the blobs. Evidently, they 
are also fractal Brownian walks whose properties are set 
entirely on the short-range statistics. So, a m∝ β  where m  
is the number of steps involved in a blob and β  is set on the 
short-range statistics ( )β ∈ 0 1, . The limit points β = 0  and 
β = 1 are excluded because the first one corresponds to the 
lack of any persistence while the second one corresponds to a 
deterministic behavior. Further, a large fluctuation can be 
considered as a symmetric random walk of blobs. This 
presentation of a fluctuation is reflected in the complicated 
exponent ( )µ ∆ . Therefore, the relation between the 
duration and the size of every fluctuation is in the power 
form ( )A A1 µ  

 

 Following [2,8] we found out the expected frequency for 
occurrence of a fluctuation of large size A  : 
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where µ  is a parameter specific to the system, that it is 
always confined in the range ( )µ ∈ 0 1,  ∀A . 

 Intuitively, it seems that the time necessary for the 
emerging of a fluctuation of size A  reads: 

( ) ( )
τ A

f A
=

1
  (3) 

However, this is the case only with the Poissonian process 
whose parameter is  apriori set. Yet, here we encounter a 
complicate process that comprises  “different” events each of 
which has its own probability ( )f A . Therefore, the time 
necessary for emerging a less probable event is the sum over 
the times neccesary for emerging of all more probable than 
that events. Therefore, the first exit time for a fluctuation of 
size Acr  reads: 
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where Acr  is the a priori given critical value. 

 Comparing equations (1) and (4) we obtaine that T  
deviates more and more from Tw F−  when A  approaches σ  
from below. However, this is the range of the most probable 
fluctuations. The presence of the term 

1

A µ  in (4) makes T  
much smaler than Tw F− . As a result, the occurrence of large 
fluctuations happens more frequently than it has been 
expected so far.  

4. STOCHASTIC SIMULATION 

 For the numerical modeling the example was chosen of 
the catalytic CO oxidation over Pt-group metals, and the 
generic Turner, Sales and Maple (TSM) scheme [12] was 
used. It involves the Langmuir-Hinshelwood type reaction 
and the oxide formation and removal. The CO adsorption, 
dissociative O2 adsorption and oxide formation are assumed 
to occur on the same vacant sites. Interactions between 
reacting adspecies are neglected. The evolution of the 
stochastic system is described by a master equation: 

 ( )dP P W P W
dt
α

β βα α αβ
β

= −∑  (5) 

for the probabilities Pα  of all possible configurations of the 

adsorbates on the lattice. Wαβ  and Wβα  are the intensities of 
the adsorbed layer transformations from configuration α  
into configuration β  and vice versa, per unit time. For the 
simulation, probabilities of  random events are defined, 
according to the TSM model, by the rate laws: 

 ( )1 1 11CO CO O COO
r k P kθ θ θ θ∗ −= − − − −  (6) 

 ( )2

2

2 2 1O CO O O
r k P θ θ θ ∗= − − −  (7) 

 3 3 CO Or k θ θ=  (8) 

 4 4 Or k θ=  (9) 

 5 5 CO O
r k θ θ ∗=  (10) 

with initial values: 

 (0) 0; (0) 0; (0) 0CO O O
θ θ θ ∗= = =  

 The CKS program [13] was used for the simulation with 
the size of the system equal to 400 particles, which 
corresponds to 20x20 lattice. 

 In Fig. 1 the results of the simulations are presented for 
the case of rate constants corresponding to the one stable, but 
excitable, steady state in phase space. In this case, the 
simulation succesfully reproduced the results of Kurkina et 
al. [12] The fluctuations near the excitable steady state 
sometimes lead to the phenomena of induced oscillations [12, 
14]. Our results demonstrated that induced oscillations in this 
case are not connected with diffusion and spatial relations. 
Observed oscillations are sensitive to the size of the system, 
e.g. relative size of the fluctuations. 

 
Fig.1. Results of the MC simulation for k1 = 107 s-1 Torr-1, 
PCO = 10-7 Torr, k-1 = 0.2 s-1, k2PO2 = 0.5 s-1, k3 = 105 s-1,  

k4 = 0.03 s-1, k5 = 0.02 s-1. 

 The frequency of the induced oscillations corresponds to 
the frequency of the development of a fluctuation whose 
amplitude is equal to the “distance” to the critical value, 
threshold of stability of the system. The average period of the 
noise induced oscillations corresponds to the first exit time, 
calculated in the section 3. For the complete comparison 
between the simulation and theoretical analysis, detailed 
stability analysis of the TSM scheme seems to be necessary. 

5. CONCLUSIONS 

 Our task is the evaluation of the first exit time for the 
reaction kinetics induced by the bounded fluctuations. The 
latter originates from the new properties of the state space 
imposed by the relation between the long-term stability of a 
system and the properties of the local fluctuations in the 
extended systems. It turns out that a necessary condition for 
the long-term stability is the spatial coherence of the 
fluctuations and the boundedness of their amplitude. In turn, 
the spatial coherence gives rise to everlasting fluctuations of 
the global rates that renders the importance of the problem 
for the first exit time. 

 
286 



 Our evaluation shows that the occurrence of large 
fluctuations happens more frequently than it has been 
expected so far. 

 The fluctuations are particularly important if small 
nanoparticles are active phase of the catalyst surface, as it 
was studied by the Koleva et al. Here, it was demonstrated 
that some fascinating phenomena, as the time oscillations in 
catalyst coverage, can occur under the influence of large 
enough fluctuations.  
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Abstract – The consideration of the influence of fluctuation 
size on the time dynamics is particularly interesting from the 
aspect of the nanostructured catalysts and processes on their 
surfaces during the synthesis and application. In present 
paper the influence of the noise on the kinetics of the 
processes on the catalyst surface is analized. Our evaluation 
shows that the occurrence of large fluctuations happens more 
frequently than it has been expected so far. The methodology 
is introduced to compare theoretical prediction with 
numerical simulation. 
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