
PARAMETRIC ZOOMING OF SYNTAX FORMS
Aleksandar Perović, Nedeljko Stefanović, Momčilo Borovčanin, Aleksandar Jovanović

Group for intelligent systems (GIS), Mathematical Faculty Belgrade

Abstract We shall present various procedures for the syn-
tax analysis (in certain formal systems) of the patterns
(syntax forms) defined by user which are integrated in an
implementation of a proof checker for the propositional cal-
culus.

1. INTRODUCTION

By syntax zooming we assume variety of algorithms for
processing of syntax forms, i.e. algorithms that can allow
us to resolve problems such as syntax correctness, pattern
matching, proof correctness, and in general, analysis and
better understanding of informational bearing structures.
In this article we shall describe an implementation of a
proof checker for various propositional theories defined by
user.

Roughly speaking, propositional theory T is, in our
case, a finite nonempty set of propositional formulas. The
set of all propositional formulas is the smallest set contain-
ing the propositional letters which is closed under logical
connectives. In the terms of recursion, the set of all propo-
sitional formulas can be defined by the following clauses:

• Propositional letters are propositional formulas.

• If A and B are propositional formulas, then
(¬A), (A ∧ B), (A ∨ B), (A → B) and (A ↔ B) are
propositional formulas.

• The propositional formula can be obtained only by
finite application of the above clauses.

The only inference rule is modus ponens

A A → B

B
.

The proof in the given propositional theory T is a finite
sequence of formulas where each formula is either axiom
of T , or it can be derived from some preceding formulas
in the sequence by modus ponens.

2. SYNTAX CORRECTNESS

We shall present in full detail an algorithm for checking
the syntax correctness of the given propositional formula
by transforming it into a postfix form. To avoid unneces-
sary brackets, we shall introduce the operator precedence
for the logical connectives as follows: negation (highest
priority), conjunction and disjunction (the same priority
lesser than negation’s priority), implication and equiva-
lence (the same priority lesser then conjunction’s priority).

We shall need a stack (empty at beginning) for logical
connectives and a list (also empty at beginning) for the
final postfix form of the given formula. Mentioned list we
shall call the postform.

We shall also need one indicator variable ind (with
value formula at beginning) with two possible values: for-
mula and connective. During the reading (token by token)
of the usual infix form of the given formula, we shall use
this indicator for the saving of the current expectation -
subformula or connective.

Now we start with reading of the given formula (token
by token) from the input file and then proceed by follow-
ing rules depending on values of the ind and last token.

The value of ind is formula:

• If the last token is propositional letter then we write
it at the end of the list, change the value of ind into
connective and read the next token.

• If the last token is the negation or the left bracket,
we push it on stack and go on the next token.

• In all other cases we have the syntax incorrectness.

The value of ind is connective:

• If the last token is the negation, then we have the
syntax incorrectness.

• If the last token is some other logical connective,
then if stack is nonempty and on top of it is a con-
nective of higher priority than the last token, or it is
the same as the last token, then we pop it from stack
and write it at postform. We repeat this procedure
as long as it possible.

After that, if we found on the top of the stack a con-
nective of the same priority as the last token, it must
be different from it, so we can conclude the syntax
incorrectness.

The good cases (when we proceed with reading) are
when either the stack is empty, or on the top of it
are the left bracket or a connective of the lower pri-
ority. In those cases we push the last token on the
stack, change value of the ind to formula and read
the next token.

• If the last token is the right bracket then:

– If the stack is empty, then we have the syntax
incorrectness.

– If on the top of the stack is connective, then we
pop it from stack and write it on the postform.

We repeat this procedure as long as the stack is
nonempty and on the top of it is not the left bracket.
If we encounter the left bracket, we pop it from stack
and read the next token.

 Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom III
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. III

209

• In all other cases we have the syntax incorrectness.

Let us remark that each occurrence of syntax incorrectness
automatically halts the algorithm.

We repeat described procedure as long as there are
any tokens left in the input file. If the stack is empty, the
postform represent the postfix form of the given formula.

Otherwise, we pop from the top of the stack each connec-
tive. If we encounter the left bracket, then we have the
syntax incorrectness.
Example The following table represent a step by step
walk through the algorithm for the input formula

a ∧ (¬b → c ∨ d) → e.

step token ind stack postform
1 a formula a
2 ∧ connective ∧ a
3 (formula ∧(a
4 ¬ formula ∧(¬ a
5 b formula ∧(¬ ab
6 → connective ∧(→ ab¬
7 c formula ∧(→ ab¬c
8 ∨ connective ∧(→ ∨ ab¬c
9 d formula ∧(→ ∨ ab¬cd
10) connective ∧ ab¬cd∨ →
11 → connective → ab¬cd∨ → ∧
12 e formula → ab¬cd∨ → ∧e
13 connective ab¬cd∨ → ∧e → .

3. PATTERN MATCHING

First we will need an algorithm for the acquisition
of a “right tail” from the given propositional formula
which “heart” (i.e. connective with lowest priority) is a
binary logical connective. For instance, in the formula
(A → B) ∧ C the “heart” is ∧, the “left tail” is A → B,
and the “right tail” is C.

Input: propositional formula which heart is a binary con-
nective.

Output: the right tail of the given formula.

• counter = 1

• list = ∅
• Change the matrix of the given formula into postfix

form, then start to read it token by token.

• If token = binary connective, then we increase
counter by 1, write the token at list and read the
next token.

• If token = unary connective, then counter is un-
changed, we write the token at list and read the
next one.

• If token = letter, then we decrease counter by 1 and
write the token at list. If counter = 0 algorithm
halts and list represent right tail. Otherwise, we
read the next token.

The pattern matching algorithm
We have formulas F1 and F2 in postfix notation. Start

with comparing of last tokens in both formulas.

• If last token of F1 is a connective, then the last to-
ken of the formula F2 must be the same connective.
Otherwise, the formula F2 is not an instance of the
formula F1. If mention tokens are the same, we re-
move them.

• If the last token of F1 is a letter, we use earlier de-
scribed algorithm to acquire the subformula from the
end of F2, and set substitutional condition letter =
subformula. The algorithm stops if this condition
contradicts some earlier introduced condition.

We continue with this procedure until we remove all to-
kens from one of the formulas F1 and F2. The formula
F2 is an instance of the formula F1 if described algorithm
removes all tokens simultaneously from both formulas.

4. PROOF CORRECTNESS

In this section we shall present the main algorithm, i.e.
the integration of previously described procedures.

Input: a finite list of axioms and a finite list of proposi-
tional formulas.

Output: YES, if the given list represents a proof in the
given propositional theory; NO otherwise.

1. Transform given formulas into postfix form. On
any occurrence of syntax incorrectness the algorithm
halts. If each formula is correct, then form a se-
quence from the list of formulas which are not ax-
ioms. Let m be a length of the formed sequence and
let An be an n-th formula of the sequence.

210

2. n = 0

3. Output = YES

4. If m = n, then algorithm halts. Otherwise, increase
n by 1 and do the following:

• Check whether An is an instance of any of ax-
ioms or not. If the answer is positive, goto 4.
Otherwise, check whether An can be obtained
from preceding members of the sequence or not.
If the answer is positive, then goto 4. Other-
wise, change the value of Output into NO and
stop the algorithm.

5. FURTHER RESEARCH

We plan to modify presented proof checker to case of
predicate logic. This modification can be used not only
for verification of formal proofs in some classical formal
systems (such as first order predicate logic, modal logic,
Heyting algebra etc.), but also for an analysis of spoken
languages.

Our main goal is to develop similar procedures for mu-
sic scores and DNA chains, since both can be treated as
syntax forms and there is a need of finding an adequate
similarity criteria (or developing some sort of invariance
theory) for such forms.

REFERENCES

[1] Melvin Fitting, ”First-Order Logic and Automated
Theorem Proving,” 1996, 2nd ed., Springer-Verlag

[2] Raymond M. Smullyan, ”First-Order Logic,” 1968,
Springer-Verlag

[3] S. C. Kleene, ”Introduction to Metamathematics,”
1952, North-Holland

[4] Editors A. Robinson and A. Voronkov, ”Handbook
of Automated Reasoning,” vol 1,2, 2001, Elsevier Sci-
ence

211

