

A MDA-BASED DESCRIPTION LOGIC REASONER
Nenad Krdžavac, Faculty of Electrical Engineering, University of Belgrade

nenadk@galeb.etf.bg.ac.yu , www.goodoldai.org.yu
Dragan Gašević, FON- School of Business Administration, University of Belgrade

gasevic@yahoo.com, www.goodoldai.org.yu

Abstract – This paper describes implementation details of
an Attribute Language with Complement (ALC) description
logic reasoner based on a model-engineering technology,
called Model Driven Architecture (MDA). Some publicly
available reasoners are successfully implemented in object-
oriented technology or in LISP programming language, but
reasoners do not adore state-of-the-art software engineering
standards and their authors did not describe models of the
reasoners in a standard (i.e. UML) notation.

1. INTRODUCTION

 Almost every software project needs an analysis of the
range of problems that the software being developed should
solve [18]. One way is to specify and build the system based
on modeling techniques with e.g. Unified Model Language
(UML) as it supports full life development cycle of such
software: design, implementation, deployment, maintenance,
evaluation, and integration with later systems [22]. Model
Driven Architecture (MDA) is an approach that separates the
specification of functionality from the specification of
implementation on a specific technology platform [17].
According to MDA concepts, systems are developed via
transformation of models. MDA defines two basic kinds of
models: Platform Independent Model (PIM) and Platform
Specific Model (PSM). Developers start by creating a PIM
and transform the model step–by-step into a more PSM
model [11]. A possible application domain for using MDA
standards are knowledge representation languages like
languages for developing ontologies. For example, there are
some efforts to develop MDA-based ontology languages,
namely Ontology Definition Metamodel (ODM) and
Ontology UML Profile (OUP) [9].

In fact, DLs are the most recent name for a family of
knowledge representation formalisms that represents the
knowledge of the application domain (the “world”) by
defining the most relevant concepts of the domain (i.e. its
terminology) and by using these concepts to specify
properties of objects and individuals occurring in the domain
(i.e. the world description) [2]. One of the most important
constructive properties of DLs is reasoning services, which
can be applied as reasoning with ontologies. Some
implemented DLs reasoners [13], [10], [21], publicly
available, can reason with ontologies, but the authors of those
reasoners did not implement such reasoners by using MDA
engineering techniques and the reasoners do not adore these
software standards. The goal of this paper is to survey
implementation details of a description logic reasoner based
on DLs meta-model. In section 2 we desribe basic concepts
of ALC description logic and describe basic reasoning
service with DLs. Section 3 describes MDA for ODM.
Section 4 outlines implementation details of the MDA-based

(ALC) reasoner. In this section we also present some
practical aspects of such an implementation and give some
practical disadvantages of the proposed OMG’ DL meta-
model.

2. DESCRIPTION LOGIC PROPERTIES: A BRIEF
 SURVEY

 Historically, DLs evolved from semantic networks and
frame systems, mainly to satisfy the need of giving a formal
semantics to these formalisms [14]. The basic notions in DLs
are concepts (unary predicates) and roles (binary relations).
A specific DL is mainly characterized by a set of
constructors, it provides to build more complex concepts
(concept expressions) and roles out of atomic ones.
According to [14], syntax and semantic of the logic (with
example) is shown in next definitions.

Definition 1: (ALC syntax)

Let NC and NR be disjoint and countably infinite sets of
concepts and role names. The set of ALC-concepts is the
smallest set such that:

1. Every concept name A∈ NC is an ALC concept

2. If C and D are ALC concepts and R∈NR, then ¬C,
C⊓D, C⊔D, ∃R.C, ∀R.C are ALC –concepts ⋄

We use ⊤ as an abbreviation for some fixed propositional
tautology such as (A ⊔ ¬A), whereas ⊥ as a concept (A ⊓
¬A). The meaning of the concepts is fixed by Tarski-style
semantics [14].

Definition 2: (ALC semantics)

An ALC–interpretation I is a pair (∆I, ·I) where ∆I is non–
empty set called domain, and ·I is an interpretation function
that maps every concept name A to a subset AI of ∆I and
every role name R to a binary relation RI over ∆I.

The interpretation function is extended to complex concepts
as follows:

1. (¬C)I = ∆I ⁄ CI

2. (C⊓D)I = CI ∩ DI

3. (C⊔D) I = CI ∪ DI

4. (∃R.C)I ={d | (∃e)(e∈∆I)((d, e) ∈RI ∧ e∈ CI)}

5. (∀R.C)I ={d | (∀e)(e∈∆I , (d, e)∈RI ⇒ e∈ CI)}⋄

Example 1: Suppose that nouns Human and Male are
concept names and hasChild is the role name, then ALC
concept (Human⊓∃hasChild.⊤) represents all persons that

Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom III
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. III

216

have a child while concept (Human⊓∀hasChild.Male)
represents all persons that have only male children⋄

Standard reasoning services offered by DLs are [14]:

1. Decide whether a concept C is satisfiable, i.e.
whether it can have any instances (concept
satisfiability),

2. Decide whether a concept C is subsumed by a
concept D, i.e. every instance of C is necessarily
also an instance of D (concept subsumption), and

3. Decide whether a given ABox is consistent, i.e.
whether a world as described by the ABox may exist
(ABox consistency).

These reasoning problems are called “standard” reasoning
tasks, but a non-standard reasoning service is, for example,
unification of two concept patterns [14]. Concept
subsumption can be transposed into an equivalent
satisfiability problem [12], and validity of this transformation
is clear from the semantics of subsumption. Satisfiability
problem can be solved using algorithm based on tableaux
calculus [12], [14].

Tableaux algorithms try to prove the satisfiability of a
concept expression D, by demonstrating a model – an
interpretation I= (∆I, ·I) in which DI≠ ∅ [12]. In general,
tableaux algorithms decide whether a concept is satisfiable
by trying to construct a model for it [16]. A tableau is a graph
which represents such a model, with nodes corresponding to
individuals and edges corresponding to relationships between
individuals. According to [12], tableaux algorithm is
guaranteed to terminate.

A knowledge base (KB) in DLs comprises two components,
TBox and ABox [2]. The terminology or is called TBox. On
the other hand, the name of assertions is ABox that
represents named individuals expressed in terms of the
vocabulary [18]. The definition of TBox and ABox is given
in [2], [14]. Reasoning allows one to infer implicitly
represented knowledge from such knowledge that is
explicitly contained in the knowledge base [2].

3. MDA FOR ODM

 The basic principle “Everything is object” was important
in the 80’s to set up object-oriented technologies [4]. Beside
object-oriented technology known is model-engineering
concept which basic principle is “Everything is model”.
Engineering models aim to reduce risk by helping us better
understand both a complex problem and its potential
solutions before undertaking the expense and effort of a full
implementation [25]. MDA is defined as a realization of
model-engineering principles around a set of OMG standards
[4]. The central part of MDA is the four-layer architecture
that has a number of standards defined at each of its layers
(see Fig. 1). Most of MDA standards are developed as meta-
models using meta-modeling. The top-most layer (M3) is
called meta-meta-model and the OMG’s standard defined at
this layer is Meta-Object Facility (MOF). MOF is OMG’s
standard closely related to UML that enables metadata
management and language definition [17]. According to [28],
MOF is standard that specifies an abstract language for

describing other languages. Actually, MDA layers are called
linguistic layers. On the other hand, concepts from the same
linguistic layer can be at different ontological layers [1]. The
main advantages of the use of MDA concepts for
implementation of our reasoner are the following:

1. Suitability for making further extension of the
reasoner

2. Less mistakes during implementation as we use
tools for transformation from model to code (in our
case JMI interfaces)

3. Our future code (extension of the reasoner) can be
integrated, easily, in such a software production
environment.

The MDA’s meta-model layer is usually denoted as M2 (Fig.
1). At this layer we can define a new meta-model (DL meta-
model). The next layer is the model layer (M1) – the layer
where we develop real-world models (or domain models). In
terms of UML models, that means creating classes, their
relations, states, etc. [9]. The bottom layer is the instance
layer (M0). According to [9], there are two different
approaches to explain this layer:

1. The instance layer contains instances of the concepts
defined at a model layer (M1), e.g objects in some
programming languages.

2. The instance layer contains things from our reality –
concrete (e.g. Peter is instance of the class
Professor, similar as individuals in description
logics) and abstract (e.g. UML classes – Student,
Persons etc). It is similar as concepts in description
logics, but classes in UML have behavioral
component).

Fig.1.. The four layer MDA and its ontological instances of
 relations-linguistics and ontological

There is an XML-based standard for sharing metadata that
can be used for all of the MDA’s layers. This standard is
called XML Metadata Interchange (XMI) [19]. In MDA
technological space is defined ODM at M2 layer (Fig.2).
ODM in its structure includes several meta-models [18],
proposed by OMG. The core of this architecture is DL meta-
model. To be useful and effective DLs meta-model must
have [25] a few characteristics such as: abstraction,
understandability, accuracy, predictiveness, and inexpensive.

JMI specification defines dynamic, platform neutral
infrastructure that enables the creation, storage, access,
discovery, and exchange of metadata [6]. JMI also specifies
the Java programming interface for manipulating MOF-based
models and meta-models. Furthermore, JMI enables
generation of programming interfaces based on such models

217

[9]. To generate JMI interfaces from the meta-model we used
OMG’ XML Metadata Interchange standard (XMI), which
provides a mapping form MOF to XML [6]. In object
oriented-paradigm we can not use benefits of such a meta-
modeling approach.

4. IMPLEMENTATION DETAILS

The OMG DL meta-model is described in UML language
(M2 layer, Fig. 1). According to the OMG API specification
for ODM meta-models [18], the DLs meta-model has three
packages shown in Fig. 3. The packages are generated in to
Java implementation packages. The MOF reflective packages
contains eight abstract interfaces that are extended by the
generated interfaces [6]. By using some of present MDA-
repositories we have a feature to produce JMI compliant code
from the DLs meta-model.

Fig.2. Description logics meta-model in MDA technological

space

For the DL meta-model we describe two generated
interfaces:

1. Instance interfaces
Instance interfaces contain methods for accessing instance-
level attributes and references and invoking instance-level
operations [6]. The JMI instance interface, which
corresponds to meta-class Term [18], does not contain such
methods and extends RefObejct abstract interface. Here is a
part of the generated Java code for the metaclass Term:

package org.omg.odm.dl;

public interface Term extends javax.jmi.reflect.RefObject{

}
2. Class proxy interfaces

The interface ClassProxy extends RefClass and contains
operations for creating instances of the corresponding
metaclass. The implementation of the interface is in the
package org.omg.odm.dl.impl and we add suffix “Impl” to
all the implemented interfaces in that package.

package org.omg.odm.dl;

public interface ConceptClass extends javax.jmi.reflect.RefClass {

 public Concept createConcept();

 public Concept createConcept(java.lang.String uniqueidentifier);

}

For implementation of reasoning algorithms we use language
called The Constraint Handling Rules (CHR) [23]. Our

motivation is benefits of the language in implementation
terminological reasoning, described in [27]. Inference rules
for ALC logic [12], can be directly written in the language
[24]. To integrate these rules in our MDA, we use The Java
Constraint Kit (JCK) [24]. This is a package which contains a
generic search engine to solve constraint problem, a high
level language to write applications specific constraint
solvers. Practical and theoretical aspects of Constraint
Handling Rules are given in [23].

Fig. 3. Packages for generated description logic reasoner

Beside all advantages of the meta-model-based approach to
the implementation DL reasoner, we have faced the some
shortcomings in the DL meta-model during the generation of
JMI interfaces. Our motivation to describe them is to provide
readers of the papers with some useful information about
practical problems in implementation any software in model-
engineering paradigm using current tool support. The first
tool we used is Poseidon for UML to save the DL meta-
model in an XMI file. With the tool uml2mof.jar we
generated a MOF XMI file. Using Java NetBeans 3.5.1 we
generated the JMI interfaces. Here are some experiences with
using the DL meta-model:

1. Association ends of the composition relation
between metaclasses Assertion and Instance have
the same name. When we generate JMI interfaces in
the association proxy interface we found objects of
different metaclasses that have the same name, so
we had to change them manually.

2. Association ends between the metaclasses Term and
Expression did not have any name, so we had to
named them, because we could not generate JMI
interfaces according to JSR-40 [6].

3. The DL meta-model cannot support a very important
class of DLs called description logics with concrete
domain and functional dependences.

4. During the generation of JMI interfaces all the OCL
 constraints were ignored and we had to implement
 the constraints manually.

5. CONCLUSION AND FUTURE WORK

In this paper we analyzed implementation details of ALC
description logic reasoner using MDA concept.

We hope that readers of this paper will find useful
information how to apply MDA approaches in
implementation such sort of software especially theorem
provers. Our future work will be focused on extensions of the
reasoner to support ontology, especially OWL ontologies and
implementation tableaux algorithms for description logic
with concrete domains and functional dependencies, in

218

model-engineering paradigm. We will develop a graphical
user interface for the reasoner.

LITERATURA

[1] C. Atkinson, T. Kühne, Model-Driven Development:
A Metamodeling Foundation, IEEE Software, Vol. 20,
No. 5, pp. 36-41, 2003.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.
Patel-Schneider, The Description Logics Handbook-
Theory, Implementation and Application, Cambridge
University Press, 2003.

[3] D. Berardi, A. Calĺ, D. Calvanese, G. Ge Diacomo,
Reasoning on UML Class Diagrams, Technical Report
11-03, Dipartimento di Informatica e Sistemistica,
Universitá di Roma, »La Sapienza [Online].Avaliable:
http://www.inf.unibz.it/~calvanese/teaching/03-
ESSLLI/ , 2003.

[4] J. Bézivin, In Search of a Basic Principle for Model
Driven Architecture, The European Journal for The
Informatics Professional, Vol. V, No. 2, April 2004.

[5] J. Bézivin, F. Jouault, P. Valduriez, On the Need for
Megamodels, In Proc. of the Int. Workshop Best
Practices for Model Driven Software Development,
Vancouver, Canada, 2004.

[6] R, Dirckze, (spec. leader) Java Metadata Interface
(JMI) Specification Version 1.0, [Online].Available:
http://jcp.org/aboutJava/communityprocess/final/jsr040
/index.html, 2002.

[7] D. Djurić, et al: A MDA-based Approach to the
Ontology Definition Metamodel, In Proc. of the 4th
Int. Workshop on Comp. Intel. and Inf. Tech., Niš,
Serbia and Montenegro, 2003, pp. 51-54.

[8] F.M. Donini, M. Lanzerini, D. Nardi, A. Schaerf,
Reasoning in Description Logics, In Gerhard Brewka
editor, Fundation of Knowledge Representation, ,
CSLI-Publication, 1996, pp.191-236.

[9] D. Gašević, et al: “Approaching MDA and OWL
Ontologies Through Technological Spaces,” In Proc.
of the 3rd Int. Workshop on Software-Model
Engineering, Lisbon, Portugal, 2004.

[10] V. Haarslev and R. Moller, Description of the RACER
System and its Applications, Proceedings
International Workshop on Description Logics (DL-
2001), Stanford, USA, 2001.

[11] P. Hnĕtynka, M. Píše, Hand-written vs. MOF-based
Metadata Repositories: The SOFA Experience, In
Proc. of the 11th IEEE int. Conf. and Workshop on the
Engineering of Computer-Based Systems (ECBS’04),
Brno, Czech Republic, 2004.

[12] I. Horrocks, Optimising Tableaux Decision Procedures
for Description Logics, PhD Thesis, Univesity of
Manchester, 1997.

[13] I. Horrocks, The FACT System, In. H. de Swart,
editor, Automated Reasoning with Analytic Tableaux
and Related Methods, Int. Conf. Tableaux'98, number
1397 in Lecture Notes in Artificial Intelligence,
Springer-Verlag, May 1998, pp.307-312.

[14] C. Lutz, The Complexity of Description Logics with
Concrete Domains, PhD thesis, LuFG Theoretical
Computer Science, RWTH Aachen, Germany, 2002.

[15] J. Miller and J. Mukerji, (eds), MDA Guide Version
1.01, OMG Document Number: omg/2003-06-01,
[Online].Available from:
http://www.omg.org/docs/omg/03-06-01.pdf , 2003.

[16] M. Miličić, Description Logics with Concrete
Domains and Functional Dependencies, Master's
Thesis, Technical Univesity Dresden, Dresden, May
2004.

[17] Meta Object Facility (MOF) Specification v1.4. OMG,
Document formal/02-04-03, [Online]. Available:
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-
03.pdf, 2002.

[18] Ontology Definition Meta-Model, Preliminary
Revised, Submission to OMG RFP ad/2003-03-04,
Vol.1 [Online]. Available from:
http://codip.grci.com/odm/draft/, August 2004.

[19] OMG XMI Specification, v1.2., OMG Document
formal/02-01-01, [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/2002-01-01,
2002.

[20] E. Seidewitz, What Models Mean, IEEE Software,
Vol. 20(5), pp. 26-32, 2003.

[21] E. Sirin and B. Parsia, An OWL DL Reasoner,
Proceedings International Workshop on Description
Logics (DL2004), British Columbia, Canada, 6. - 8.
June 2004.

[22] R. Soley, MDA, An Introduction [Online].Available:
http://www.omg.org/mda/mda_files/Soley-
MDA/MDA-Seminar-Soley.htm, 2004.

[23] T. Frühwirth, Theory and Practice of Constraint
handling rules, Special Issue on Constraint Logic
Programming (P. Stuckey and K. Marriot, Eds.),
Journal of Logic Programming, Vol 37(1-3), October
1998, pp.95-138.

[24] S. Abdennadher, E. Krämer, M. Saft and M.
Schmauss, JACK: A Java Constraint Kit, Electronic
Notes in Theoretical Computer Science, Vol. 64, 2000.

[25] B. Selic, The Pragmatics of Model-Driven
Development, IEEE Software, Vol.20 (5), pp. 19-25,
2003.

[26] S. J. Mellor, A. N. Clark, T., Futagami, Guest
Editors’Introduction: Model-Driven Development,
IEEE Software, Vol. 20, No. 5, pp.14-18, Sep/Oct,
2003.

[27] T. Frühwirth, P. Hanschke, Terminological Reasoning
with Constraint Handling Rules, Chapter in Principles
and Practice of Constraint Programming (P. Van
Hentenryck and V.J. Saraswat, Eds.), MIT Press, 1995.

[28] M., Matula, NetBeans Metadata Repository,
[Online].Available: http://mdr.netbeans.org/MDR-
whitepaper.pdf , 2003.

219

