
ONE IMPLEMENTATION OF THE QUANTIFIER ELIMINATION FOR THE
THEORY OF STRUCTURE (Q, +,−, <, 0)

Dragan Doder, Mirna Udovičić, Miloš Milošević, Dejan Ilić,
Group for the intelligent systems (GIS), Mathematical Faculty Belgrade

Abstract An implementation of quantifier elimination
for the structure (Q,+,−, <, 0) is given with the discus-
sion of further integration of developed software.

1. INTRODUCTION
By quantifier elimination we assume the existence of an

effective procedure of finding a quantifier free formula (i.e
formal expression without occurrence of quantifier sym-
bols ∀ and ∃) which is equivalent to the given formula in
some fixed formalism. By formalism we usually assume
a first order theory of some recursive language, or a first
order theory of certain recursive structure.

The applicability of the method lies in the fact that
each problem that can be reformulated by validity of some
first order formula (possibly with quantifiers) can be re-
duced to the validity of a quantifier free first order for-
mula. This yields a decision procedure if the ground model
(structure) is recursive.

In this article we shall present a procedure for the
quantifier elimination for (Q, +,−, <, 0).

2. QUANTIFIER ELIMINATION

By a language we will assume a recursive set L which
elements (if any) are constant, functional and relational
symbols. Of course, sets of constant symbols, functional
symbols and relational symbols are pairwise disjoint. By
a theory of language L we will assume a recursive set of
sentences of L.

We say that T admits quantifier elimination if for each
formula ϕ of L there is a quantifier free formula ψ such
that

T ` ϕ ↔ ψ, (1)

i.e. there is a finite sequence of formulas of L which fin-
ishes with ϕ ↔ ψ and any other member of the sequence
is either axiom of a first order predicate calculus, or be-
longs to T , or it is obtained by some inference rule (modus
ponens and generalization) from some predecessors.

To simplify notation, instead of T ` ϕ ↔ ψ we shall
write ϕ ∼ ψ. Suppose that we can effectively eliminate the
existential quantifier from each formula of the form ∃xϕ,
where ϕ is a quantifier free formula. Then we also have
a recursive quantifier elimination procedure described as
follows:
Input: formula ϕ
Output: quantifier free formula ψ such that
ϕ ∼ ψ.

• If ϕ has a form ϕ1 ∗ ϕ2, where ∗ is one of the con-
nectives ∧,∨, → and ↔, then first find quantifier
free formulas ψ1 and ψ2 such that ϕi ∼ ψi, then
ψ = ψ1 ∗ ψ2.

• If ϕ has a form ¬ϕ1, then first find a quantifier free
formula ψ1 such that ϕ1 ∼ ψ1, then ψ = ¬ψ1.

• If ϕ has a form ∃xϕ1, then first find a quantifier for-
mula ψ1 such that ϕ1 ∼ ψ1, then find a quantifier
free formula ψ such that ∃xψ1 ∼ ψ.

• If ϕ has a form ∀xϕ1, then proceed as described in
the previous two clauses for the formula ¬∃x¬ϕ.

Thus, theory T admits the quantifier elimination if and
only if we can eliminate the existential quantifier from
each formula of the form ∃xϕ, where ϕ is a quantifier free
formula.

Back to our problem, let T be a theory of the struc-
ture (Q, +,−, <, 0), i.e. T is the set of all sentences which
are true in the mentioned model. We want to show that
T admits the quantifier elimination. To do that, first we
need to analyze quantifier free formulas by its complexity.
Up to equivalence, the atomic formulas have one of the
two following forms:

n1x1 + · · ·+ nkxk = 0 (2)

and

n1x1 + · · ·+ nkxk < 0, (3)

where ni are integers 6= 0 and, for example, 2x and −2x
are respectively abbreviations for the expressions x + x
and (−x)+(−x) (here “+” and “−” are treated as formal
symbols). Further, the negation of the formula (2) is the
formula

(
k∑

i=1

nixi) < 0 ∨ (
k∑

i=1

−nixi) < 0, (4)

and the negation of the formula (3) is the formula

(
k∑

i=1

nixi) = 0 ∨ (
k∑

i=1

−nixi) < 0. (5)

If we combine this with the fact that negations of formulas
ϕ∧ψ, ϕ∨ψ, ϕ → ψ and ϕ ↔ ψ are respectively formulas
¬ϕ ∨ ¬ψ, ¬ϕ ∧ ¬ψ, ϕ ∧ ¬ψ and (¬ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ), we
can conclude that each quantifier free formula is, up to
equivalence, a “nice” (i.e. without occurrence of ¬,→ and
↔) boolean combination of atomic formulas (2) and (3).
To further simplify notation, let

m1

n1
x1 + · · ·+ mk

nk
xk = 0 (6)

 Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom III
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. III

202

be an abbreviation of

m1n2 · · ·nkx1 + · · ·+ mkn1 · · ·nk−1xk = 0, (7)

and let
m1

n1
x1 + · · ·+ mk

nk
xk < 0 (8)

be an abbreviation of

m1n2 · · ·nkx1 + · · ·+ mkn1 · · ·nk−1xk < 0 (9)

(here ni are positive integers). Finally, we are ready to
sketch the algorithm:
Input: a formula ∃xϕ, where ϕ is a quantifier free for-
mula.
Output: a quantifier free formula A(ϕ) with the property
∃xϕ ∼ A(ϕ).

• Check whether x is a dummy variable for ϕ or not.
If x is a dummy variable, then A(ϕ) = ϕ. Otherwise,
proceed with an algorithm.

• If ϕ is a formula of the form
∨n

i=1 ϕi then A(ϕ) is
the formula

∨n
i=1 A(ϕi).

• If ϕ is a formula of the form
∧m

i=1

∨ni

j=1 ϕij with at
least one i such that ni > 1 holds, then A(ϕ) is the
formula ∨

f∈F
A

(m∧

i=1

ϕif(i)

)
,

where F is the set of all functions with domain
{1, . . . ,m} such that f(i) ∈ {1, . . . , ni}, for all i from
the domain.

• If ϕ is a formula of the form n0x + A = 0 ∧ ψ(x),
where A is a term without occurrence of x, then
A(ϕ) is the formula A(ψ(−A/n0)).

• If ϕ is a formula of the form
∧k

i=1(pix + Ai < 0),
where Ai are terms without occurrence of x and pi

are positive integers, then A(ϕ) is the formula rep-
resenting logical truth.

• If ϕ is a formula of the form
∧l

j=1(njx + Bj < 0),
where Bj are terms without occurrence of x and nj

are negative integers, then A(ϕ) is the formula rep-
resenting logical truth.

• If ϕ is a formula of the form

(k∧

i=1

(pix + Ai < 0)
) ∧ (l∧

j=1

(njx + Bj < 0)
)

where Ai and Bj are terms without occurrence of x,
pi are positive integers and ni are negative integers,
then A(ϕ) is the formula

k∧

i=1

l∧

j=1

(piBj + njAi < 0).

Note on complexity: It is well known that this problem
is NP-complete. This procedure can be easy transformed
to the procedure for nondeterministic machines of polyno-
mial complexity. On deterministic machines it has expo-
nential complexity.

3. IMPLEMENTATION

Usage: The input file is a simple ASCII file containing
commands \input , \def and \write. Symbols ”%” and
”#” denotes commentary to the end of the current line.
For example, lines

\input "inputf#first commentary
#second commentary
%third commentary
ile.qe"
\de#fourth commentary
f f(first se%fifth commentary
cond)
\forall first \exi%
%
%
sts second first < second

have the same effect as

\input "inputfile.qe"
\def f(first second)
\forall first \exists second first < second

Identifier is any sequence of letters and/or digits starting
with a letter. There are no keywords. The syntax of the
\input command is

\input "filename"

where filename is the name of the file. This name must
be written in only one line. The effect of this command
is the same as replacing it with complete contents of the
named file (similar to the preprocessor directive #include
"filename" in the programming language C). The syntax
of the def command is

\deflabel(variableslist) formula

where label is any identifier and variableslist is the list
of identifiers separated by white space characters. The
effect of this command is in assigning of the identifier la-
bel to the given formula which all free variables are some
of listed variables in the variableslist. The syntax of the
write command is

\write formula(formulaelist)

203

where formula is any identifier and formulaelist any list of
any number of formulae separated with white space char-
acters. The effect of this command is in the printing of
formula assigned by the identifier formula, where free vari-
ables are replaced by formulae listed in formulaelist with
respect to the order of variables from the definition of the
formula.

Now we describe the format of the formula in the input
file.

Unsigned integer: Any sequence of letters and digits
starting with letter. It is nonzero if contains at least
one nonzero digit.

Integer: Any sequence of any of forms n, +n, -n, where
n is unsigned integer. It is nonzero if such is n.

Constant: Any sequence of any of forms m, m/n, where
m is integer and n is nonzero integer. It is nonzero
if such is m.

Variable: Any sequence of letters and digits starting with
letter.

Term: The set of all terms is the least set of sequences
with following properties:

1. Constants and variables are terms.
2. If c is a constant and t is a term, then sequences

c*t, t*c are also terms. If c is nonzero and t is
a term, then sequence t/c is also the term.

3. If t and t′ are terms, then t+t′ and t-t′ are also
terms.

4. If t is a term, then (t) is also a term.

Formula: The set of all formulae is the least set of se-
quences with following properties:

1. If t and t′ are terms, then t · t′ is also a formula,
where · is any of sequences <, >, <=, >=, =, <>.

2. If f is a formula, then (f) is also a formula.
3. If f and f ′ are formulae, then f · f ′ is also

a formula, where · is any of sequences /\,
&, \land, \wedge, \/, |, \lor, \vee, =>,
->, \rightarrow, \Rightarrow, <=>, <->,
\leftrightarrow and \Leftrightarow.

4. If f is a formula then ·f is also a formula, where
· is any of sequences ~, \lnot and \neg.

5. If x is a variable and f is formula, then any of
sequences \exists x f and \forall x f is a
formula.

6. If f is a formula, then any of sequences
[\exists varlist]f and [\forall varlist]f is
the formula, where varlist is arbitrary list of
variables separated by white space characters.

7. If f is a formula, then the sequence \qe(f) is
also a formula. The effect of the function \qe()
is in replacing of given formula by equivalent
quantifier free formula.

Tokens can be separated by arbitrary number of white
space characters. The only exception is argument of the
\input command. In the above definitions white space
characters occur only in those cases where at least one
white space character is needed. Instead of \exists one
can use \e, and instead of \forall one can use any of \f
and \a.

4. FURTHER RESEARCH

The main reason for this implementation is our at-
tempt to solve the following open problem:

Which is the minimal number of squares (each square
has a different length of the edge) required for covering of
unit square in euclidian plane?

It is known that such covering exists and that in each
covering squares have rational lengths of edges. It is also
known that this problem can be reduced to the validity of
certain formula in the structure (Q, +,−, <, 0).

REFERENCES

[1] C. C. Chang, H. J. Keisler, “Model Theory”,
Springer-Verlag 1990

[2] M. Milošević, Dragan Doder, Mirna udovičić,
Filip Marić, “Quantifier Elimination - Algorithms
and Applications”, in Proc. 2nd Serbian-Hungarian
Joint Symposium on Intelligent Systems, Subotica
2004, pp 215-222

[3] M. Milošević, M. Udovičić, D. Doder, D. Ilić,
“Quantifier Elimination in Mathematical Theories”,
Proc. XLVIII ETRAN Conference, Čačak 2004

204

