

A PROPOSAL FOR REGISTER-LEVEL COMMUNICATION IN A SPECULATIVE CHIP
MULTIPROCESSOR

Milan B. Radulović, Milo V. Tomašević1

1School of Electrical Engineering, University of Belgrade

Abstract – The advantage of support for register-level
communication in speculative Chip Multiprocessors (CMP)
has already been clearly recognized in the literature. This
paper presents Snoopy Inter-register Communication (SIC)
protocol as a hardware mechanism to support the
communication of registers values and synchronization
between processor cores in a CMP architecture over a
shared bus. First, the needed software support that enables
the identification of threads from a sequential binary code in
loop-intensive applications is described. Then, the states of
loop-live and other registers in the protocol are identified.
After that, protocol actions during producer-initiated and
consumer-initiated communication between threads are
defined. Finally, a brief qualitative comparison to IACOMA
solution is given.

1. INTRODUCTION

There are two major approaches in the speculative CMP
design. The first approach is related to the CMP architecture
that is fully geared towards exploiting speculative
parallelism, e.g., Multiscalar [1], Trace processor [2], and SM
processor [3] The second approach is related to a generic
enough CMP design with only minimal support for
speculative execution, e.g., Hydra [4] or STAMPede [5]. The
application threads can communicate between themselves
through registers or through shared memory. The first
approach in the CMP design supports inter-thread
communication both through registers and shared memory,
while the second approach supports inter-thread
communication via shared memory only. Speculative CMP
architectures mostly have sufficient hardware support for
efficient speculative execution, but this large amount of
hardware remains unutilized when running a fully parallel
application or a multiprogrammed workload.

The advantage of register-level communication over
memory-level communication is in faster execution, since
memory-level communication needs the instructions to
explicitly store and load the communicated values to and
from memory, as well as for synchronization of two
communicating threads (unless special hardware support is
provided). Earlier work has shown that it is worth the effort
to include the support for inter-thread communication in a
speculative CMP [6]. Therefore, this proposal considers the
possibility to make a simpler and more cost-effective solution
for register-level communication in CMP architecture based
on the snoopy protocol [7]

2. RELATED WORK

The inter-register communication can be found in some
representative CMP architectures. The processing units in
Multiscalar [1] share a common register namespace,
considering it as a logically centralized register file no matter

it consists of physically decentralized register files, queues
and control logic. This adds a significant hardware overhead
to each Multiscalar processor core, such as duplicate registers
along with a set of register masks. In Trace processor [2] a
centralized global register file takes care about inter-thread
register communications in addition to the local register set in
each processor. Unlike Trace processor, the SM processor [3]
has all the register files completely distributed. In addition to,
each local register file has both a register map table and a
register write table to resolve dependences through registers.

However, these CMP architectures have a large amount of
hardware support dedicated to speculative execution that
remains unutilized when running a fully parallel application
or a multiprogrammed workload. It is not the case in
IACOMA CMP solution equipped with support for inter-
register communication over shared bus, but based on a
distributed directory protocol [6]. An entry for a register in a
local directory of 4-processor CMP is 12 bit-wide. Our
proposal, based on a snoopy protocol, is aimed to decrease
the directory overhead notified in IACOMA, as well as the
extra logic added to check the register availability and last-
copy status for each register in the processor.

3. SIC PROTOCOL

The speculative CMP architecture in this proposal tries to
combine the best of two above-mentioned major approaches
for configuring multiple processing units on a chip. It is
generic enough and has a minimal support for speculative
execution, while the inter-processor communication is both
through registers and memory.

Processor 1 Processor 2 Processor 3 Processor 4

(1R, 1W port) Snoopy Shared Bus

Registers

Scoreboard

FU

A0 A1 A2RegID

Local

Fig. 1. Hardware support for register-level communication in

proposed CMP architecture

Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom III
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. III

88

The proposed CMP architecture consists of four processor
cores with private L1 caches connected via shared bus, and
shared L2 cache on chip. The hardware support for register
communication is presented in Fig.1. It consists of a snoopy
shared bus for transferring register values between cores and
local scoreboards for keeping the status of registers.

3.1 Binary annotator

To run an application on a speculative CMP architecture the
threads have to be identified first. This is achieved in
software using the modified binary annotator proposed in
IACOMA. The main advantage of using a modified
IACOMA binary annotator is in identification of threads
without the need for source recompilation. As in IACOMA,
the speculative threads are limited to loop iterations. Beside
thread identification, the binary annotator also identifies the
inter-thread register-level dependences that can be found
accurately in the binary code.

The steps involved in annotation process for sequential
binary code are illustrated in Fig.2. First, the inner-loop
iterations are identified, as well as their initiation and
termination points. Then, the inter-thread register
dependences are identified. This includes identification of the
loop-live registers, which are those that are live at loop
entry/exits and may also be redefined in the loop, and other
registers, which are those that cannot be redefined in the
loop. From these loop-live reaching definitions IACOMA
binary annotator identifies the safe definitions at the points
where the register value will never be overwritten by another
definition, and, the release points for register values at the
exit of the thread (Fig. 3).

Fig.2. Binary annotation process [6]

The SIC requires some modifications of the binary annotator
related to the classification of writes to the loop-live registers.
Those writes can be divided into non-final writes and final
writes (Fig.3). Non-final writes are those that correspond to
register values that might be overwritten during execution of
loop iteration. Final writes are those that produce the register
values that will not be overwritten in any case during the
execution of current loop iteration, and, also, correspond to
safe definitions in IACOMA binary annotator. All other
writes are considered as non-final.

3.2. The SIC infrastructure

The hardware support for register-level communication
maintains the status of each thread in the form of a bit mask
in a special register. Since four threads can run in parallel in
the proposed CMP architecture, a thread status can have one
of four masks: 00, 01, 10, and 11. The non-speculative thread
(mask-00) is the one that executes the current iteration of the
loop, while the speculative successors execute the first
(mask-01), second (mask-10) and third (mask-11) successive
speculative iteration respectively. The status of non-
speculative thread will move from one thread to its
immediate successor and so on after a thread completes. It is
presumed that threads strictly commit in order to keep the
sequential semantics. The thread has to wait to reach the non-
speculative status before it can be retired and a new thread to
be initiated on the same processor. The register
communication between threads in this proposal can be
producer-initiated and consumer-initiated.

Non-final write

Final write

Fig.3. An example for safe definitions and release points,
non-final and final writes

A loop-live register value in the SIC protocol can be found in
one of the following states during the execution: Invalid
(INV), Valid-Unsafe (VU), Valid-Safe (VS), and Last Copy
(LC). Other registers can be either in Invalid (INV) or Valid-
Safe (VS) states during the execution.

The Invalid state indicates that the register’s contents is not
longer valid, and cannot be used by a local processor or
others. The Valid-Unsafe state indicates that a given register
value is valid for current thread, but it is not a final, safe
value than can be forwarded to successor threads. The Valid-
Safe state indicates that a given register value is valid for
current thread, and it is also safe to be forwarded to successor
threads. The Last-Copy state indicates that a given register
value is the only copy of valid register value among all
processor cores. Three bits (A0, A1 and A2) per register are
provided in local scoreboard (Fig.1), one for distinguishing
between loop-live and other registers and two for coding four
states for loop-live registers.

The processor core issues two types of requests: read (R) and
write. Writes can be final (FW) and non-final (NFW). The
control part of shared bus consists of BusR, BusW, Mask and
Shared signals.

89

Bus-Read (BusR) transaction is a consequence of a processor
read that misses in a local scoreboard. The read request is
issued on the bus along with the mask code in order to get the
requested register value.

Bus-Write (BusW) transaction is a consequence of a processor
write request when a speculative thread either reaches Valid-
Safe state for a given register, or when a register value in
Last-Copy state is sent on the bus. The register value is put
on the bus, so the consumer threads can load it. It is
important to emphasize that in both cases the register value is
transferred on the bus without previous request from the
consumer threads.

Mask signals are issued on the bus on read miss when a
thread requests the appropriate register value from its closest
predecessor. Each predecessor thread with requested register
value in Valid-Safe state in its scoreboard replies by posting
its mask on bus mask lines, which are realized as wired-OR
lines. Consequently, the bus interface logic in each processor
core can sense whether any other predecessor posted its mask
on the bus. The mechanism of distributed arbitration chooses
a closest predecessor thread, which is allowed to put the valid
requested register value on the bus.

Shared signal, which is also sent over a wired-OR bus line, is
issued by a consumer thread when it responds to a non-
demand producer-initiated request for sending a register
value, which has been found in Last Copy state. By raising
this line, the producer is informed that the register value
issued on the bus is loaded elsewhere and it ceases to be the
last copy.

3.3. SIC protocol state transitions

The register-level communication in this proposal is based on
SIC protocol states and transitions between them. The
processor-induced and bus-induced state transitions for loop-
live registers in SIC protocol are presented in Fig.4. Since the
registers are divided in two groups, loop-live and other
registers, the SIC protocol considers them differently. The
protocol mechanism for loop-live registers works as follows:

(1) Read hit. If a thread, either speculative or non-
speculative, issues a read request (R) for a register in VU, VS
or LC state, the request is satisfied locally and that register
remains in the same state.

(2) Read miss. A read request for a register in INV state
causes the read miss and initiates BusR transaction. Read
request will be issued on the bus along with the mask code of
speculative thread. Consequently, read miss incurs a
consumer-initiated inter-thread communication. All possible
suppliers, i.e., predecessors (non-speculative thread or/and
earlier speculative threads) that have a requested register
either in VS or LC state, reply with issuing their mask codes
on the bus and the mechanism of distributed arbitration
chooses the latest predecessor. Then, the chosen predecessor
thread supplies the requested register value over the bus. The
requested register is loaded with VU state in the local
scoreboard of the speculative thread that issued a read
request. If the requested register was in LC state at the
supplier’s side, it goes from LC state to VS state. If there is
no supplier available at the moment when a consumer thread
issued the read request on the bus, the consumer thread
blocks.

(3) Write Hit. If a register value is in VU state when a thread
(either non-speculative or speculative) issues the write
request and performs the non-final write (NFW), the register
is updated locally and it remains in VU state.

However, if a register value is in VU state when a processor
issues the write request and performs the final write (FW),
the register is updated and state is changed from VU state to
VS state. Also, the final write incurs the producer-initiated
communication by sending the register value on the bus for
the immediate successor thread. If the value is loaded into the
register of immediate successor, it raises Shared line
informing the producer that the value is received. Also, if the
successor was blocked waiting for this particular register
value, it becomes running and continues the execution. If the
shared line remains inactive (low), the producer changes the
state for this register from VS to LC in the local scoreboard.

(4) Write Miss. A thread’s non-final write (NFW) to a
register value in INV state in a local scoreboard causes the
write miss. However, the write miss does not cause the BusW
transaction in this case, but only update the register value.
Also, the register state is modified from INV state to VU
state.

INV

VU LC

VS

R, NFW

 FW

 FW/SL

NFW FW/SLBusR

BusW

FW/SH

R, FW

Fig.4. Producer-initiated and bus-induced state transitions
for loop-live registers in SIC protocol. Notation A/B
means that processor writes (final write - FW and non-
final write - NFW) are observed in relation to Shared
signal either high or low (SH, SL). Processor reads
are denoted with R. Dashed line style indicates bus-
induced state transitions.

A write miss occurs also in case when a thread performs final
write (FW) to a register in INV state. This causes the update
of the register value and the change of its state from INV
state to VS state. Also, write miss incurs a producer-initiated
inter-thread communication in case of final write by issuing a
BusW transaction on the bus. The producer thread puts the
register value on the bus, so successor thread can read it. The
actions are the same as in the case of write hit.

The protocol mechanism for other registers works as follows:

90

(1) Read hit. If a register value is in VS state when a thread,
either speculative or non-speculative, issues a read request,
this hit is satisfied locally and the register remains in VS
state.

(2) Read miss. A thread’s read to a register that is in INV
state causes the read miss and BusR transaction. Read request
is issued on the bus along with a mask code of speculative
thread. Also, read miss incurs a consumer-initiated inter-
thread communication. This case can happen only when a
processor runs a speculative thread for the first time after
some sequential section of the application. Then, non-
speculative or some predecessor thread supplies the requested
register value. The requested register value is loaded in VS
state with the consumer thread. Also, the other successor
threads that have the same register in their local scoreboards
in INV state snoop the bus and on this occasion load the sent
value in VS state by means of Read Snarfing technique [8].

3.4. Thread initiation and completion

When a processor initiates a new speculative thread (the most
speculative thread) it is necessary to invalidate any loop-live
register by setting their state to INV. However, the other
registers remain in their current state during the new thread
initiation. When a thread is about to complete, a search for
last copies (LC state) in local scoreboard is carried out. The
thread is allowed to complete only if there are no registers in
this state. Otherwise, for each register in LC state its value
must be saved by sending it over bus to its successor, in the
same way as in the processing of final write in producer-
initiated communication.

4. COMPARISON

Quantitative evaluation of the SIC proposal is not carried out
yet, but some qualitative comparison to IACOMA [7] (as an
existing solution of the same kind) can be made. As for the
hardware support for register-level communication, the SIC
scheme significantly reduces the directory overhead as well
as the overhead in extra logic for checking the register
availability and last-copy status for each register. Besides, by
means of mechanism of distributed arbitration, SIC protocol
finds the closest predecessor in an easier and faster, non-
sequential way than in IACOMA. The proposed software
support involves only minimal changes in the binary
annotator tool for thread identification

Also, the SIC protocol employs the Read-Snarfing technique
in communication for non-looplive registers that decrease a
number of misses in comparison to IACOMA and helps to
validate the other registers more quickly.

5. CONCLUSION

The SIC proposal for register-level communication in CMP
architecture is a solution for register-level communication
based on the snoopy protocol which tries to improve over the
existing solutions. It has been shown that hardware and
software support for inter-register communication is quite
acceptable and effective to provide correct speculative
execution. The future research directions will be oriented
towards qualitative evaluation of the proposed hardware
support for register-level communication by simulation
means. Also, some ideas has already appeared about
modifying the protocol into the direction of more aggressive

speculation by forwarding even possibly final write values in
order to obtain further performance gain. Finally, an
extension of the protocol functionality and making the binary
annotator tool possible to deal with other kinds of
speculations (e.g. subprogram calls, etc.) would be very
desirable.

REFERENCES

[1] G.S. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar
Processors”, Proceedings of the 22nd International
Symposium on Computer Architecture, pp. 414-425, May
1992.

[2] E.Rotenberg, Q. Jacobson, Y. Sazeides, J.E. Smith, et al,
“Trace Processors”, Micro-30, pp. 68-74, December
1997.

[3] P.Marcuello, A. Gonzalez, “Control and data dependence
speculation in multithreaded processors”, HPCA-4,
February 1998.

[4] Lance Hammond et all., “The Stanford Hydra CMP”,
IEEE MICRO Magazine, pp., 71-84, March-April 2000.

[5] J. G. Steffan, T. Mowry, "The potential for using thread-
level data speculation to facilitate automatic
parallelization", Proceedings of the 4th International
Symposium on High-Performance Computer
Architecture, Las Vegas, NV, February 1998.

[6] V. Krishnan, J.Torrellas, “A Chip-Multiprocessor
Architecture with Specualtive Multithreading”, IEEE
Transactions on Computers, Vol. 48, No. 9, September.
1999.

[7] M. Tomašević and V. Milutinović, Tutorial on the Cache
Coherence Problem in Shared-Memory Multiprocessors:
Hardware Solutions, IEEE Computer Society Press, Los
Alamitos, Calif., 1993.

[8] S.J. Eggers, R.H. Katz, “Evaluating the performance of
four snooping cache coherency protocols”, Proceedings
of the 16th International Symposium On Computer
Architecture, pages 2-15, 1989.

Sadržaj – Prednost postojanja podrške u spekulativnom
multiprocesorskom sistemu na čipu (CMP) za komunikaciju
na nivou registara je jasno pokazana u ranijim studijama. U
ovom radu se predlaže SIC (Snoopy Inter-register
Communication) protocol. On predstavlja hardverski
mehanizam koji omogućava razmenu podataka na nivou
registara i sinhronizaciju procesora u CMP sistemu preko
zajedničke magistrale. Prvo je opisana neophodna softverska
podrška za identifikaciju niti iz izvršnog koda sekvencijalne
aplikacije koja sadrži dosta ciklusa. Onda su identifikovana
stanja koja mogu imati registri koji se menjaju ili ne menjaju
u nekoj niti kao i ostala infrastruktura potrebna za protokol.
Zatim su detaljno opisane akcije protokola i prelazi između
stanja pri komunikaciji iniciranoj od strane proizvođača i
korisnika. Na kraju je dato grubo kvalitativno poređenje sa
sistemom IACOMA koji pripada istoj klasi.

PREDLOG REGISTARSKE KOMUNIKACIJE U
SPEKULATIVNOM MULTIPROCESORU NA ČIPU

Milan B. Radulović, Milo V. Tomašević

91

