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Abstract – The advantage of support for register-level 
communication in speculative Chip Multiprocessors (CMP) 
has already been clearly recognized in the literature. This 
paper presents Snoopy Inter-register Communication (SIC) 
protocol as a hardware mechanism to support the 
communication of registers values and synchronization 
between processor cores in a CMP architecture over a 
shared bus. First, the needed software support that enables 
the identification of threads from a sequential binary code in 
loop-intensive applications is described. Then, the states of 
loop-live and other registers in the protocol are identified. 
After that, protocol actions during producer-initiated and 
consumer-initiated communication between threads are 
defined. Finally, a brief qualitative comparison to IACOMA 
solution is given. 
 
1. INTRODUCTION 

There are two major approaches in the speculative CMP 
design. The first approach is related to the CMP architecture 
that is fully geared towards exploiting speculative 
parallelism, e.g., Multiscalar [1], Trace processor [2], and SM 
processor [3] The second approach is related to a generic 
enough CMP design with only minimal support for 
speculative execution, e.g., Hydra [4] or STAMPede [5]. The 
application threads can communicate between themselves 
through registers or through shared memory. The first 
approach in the CMP design supports inter-thread 
communication both through registers and shared memory, 
while the second approach supports inter-thread 
communication via shared memory only. Speculative CMP 
architectures mostly have sufficient hardware support for 
efficient speculative execution, but this large amount of 
hardware remains unutilized when running a fully parallel 
application or a multiprogrammed workload. 

The advantage of register-level communication over 
memory-level communication is in faster execution, since 
memory-level communication needs the instructions to 
explicitly store and load the communicated values to and 
from memory, as well as for synchronization of two 
communicating threads (unless special hardware support is 
provided). Earlier work has shown that it is worth the effort 
to include the support for inter-thread communication in a 
speculative CMP [6]. Therefore, this proposal considers the 
possibility to make a simpler and more cost-effective solution 
for register-level communication in CMP architecture based 
on the snoopy protocol [7] 

2. RELATED WORK 

The inter-register communication can be found in some 
representative CMP architectures. The processing units in 
Multiscalar [1] share a common register namespace, 
considering it as a logically centralized register file no matter 

it consists of physically decentralized register files, queues 
and control logic. This adds a significant hardware overhead 
to each Multiscalar processor core, such as duplicate registers 
along with a set of register masks. In Trace processor [2] a 
centralized global register file takes care about inter-thread 
register communications in addition to the local register set in 
each processor. Unlike Trace processor, the SM processor [3] 
has all the register files completely distributed. In addition to, 
each local register file has both a register map table and a 
register write table to resolve dependences through registers. 

However, these CMP architectures have a large amount of 
hardware support dedicated to speculative execution that 
remains unutilized when running a fully parallel application 
or a multiprogrammed workload. It is not the case in 
IACOMA CMP solution equipped with support for inter-
register communication over shared bus, but based on a 
distributed directory protocol [6]. An entry for a register in a 
local directory of 4-processor CMP is 12 bit-wide. Our 
proposal, based on a snoopy protocol, is aimed to decrease 
the directory overhead notified in IACOMA, as well as the 
extra logic added to check the register availability and last-
copy status for each register in the processor. 

3. SIC PROTOCOL 

The speculative CMP architecture in this proposal tries to 
combine the best of two above-mentioned major approaches 
for configuring multiple processing units on a chip. It is 
generic enough and has a minimal support for speculative 
execution, while the inter-processor communication is both 
through registers and memory. 
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Fig. 1. Hardware support for register-level communication in 

proposed CMP architecture 
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The proposed CMP architecture consists of four processor 
cores with private L1 caches connected via shared bus, and 
shared L2 cache on chip. The hardware support for register 
communication is presented in Fig.1. It consists of a snoopy 
shared bus for transferring register values between cores and 
local scoreboards for keeping the status of registers. 

3.1 Binary annotator 

To run an application on a speculative CMP architecture the 
threads have to be identified first. This is achieved in 
software using the modified binary annotator proposed in 
IACOMA. The main advantage of using a modified 
IACOMA binary annotator is in identification of threads 
without the need for source recompilation. As in IACOMA, 
the speculative threads are limited to loop iterations. Beside 
thread identification, the binary annotator also identifies the 
inter-thread register-level dependences that can be found 
accurately in the binary code. 

The steps involved in annotation process for sequential 
binary code are illustrated in Fig.2. First, the inner-loop 
iterations are identified, as well as their initiation and 
termination points. Then, the inter-thread register 
dependences are identified. This includes identification of the 
loop-live registers, which are those that are live at loop 
entry/exits and may also be redefined in the loop, and other 
registers, which are those that cannot be redefined in the 
loop. From these loop-live reaching definitions IACOMA 
binary annotator identifies the safe definitions at the points 
where the register value will never be overwritten by another 
definition, and, the release points for register values at the 
exit of the thread (Fig. 3). 

 
Fig.2. Binary annotation process [6] 

The SIC requires some modifications of the binary annotator 
related to the classification of writes to the loop-live registers. 
Those writes can be divided into non-final writes and final 
writes (Fig.3). Non-final writes are those that correspond to 
register values that might be overwritten during execution of 
loop iteration. Final writes are those that produce the register 
values that will not be overwritten in any case during the 
execution of current loop iteration, and, also, correspond to 
safe definitions in IACOMA binary annotator. All other 
writes are considered as non-final. 

3.2. The SIC infrastructure 

The hardware support for register-level communication 
maintains the status of each thread in the form of a bit mask 
in a special register. Since four threads can run in parallel in 
the proposed CMP architecture, a thread status can have one 
of four masks: 00, 01, 10, and 11. The non-speculative thread 
(mask-00) is the one that executes the current iteration of the 
loop, while the speculative successors execute the first 
(mask-01), second (mask-10) and third (mask-11) successive 
speculative iteration respectively. The status of non-
speculative thread will move from one thread to its 
immediate successor and so on after a thread completes. It is 
presumed that threads strictly commit in order to keep the 
sequential semantics. The thread has to wait to reach the non-
speculative status before it can be retired and a new thread to 
be initiated on the same processor. The register 
communication between threads in this proposal can be 
producer-initiated and consumer-initiated. 

Non-final write

Final write

Fig.3. An example for safe definitions and release points, 
non-final and final writes 

A loop-live register value in the SIC protocol can be found in 
one of the following states during the execution: Invalid 
(INV), Valid-Unsafe (VU), Valid-Safe (VS), and Last Copy 
(LC). Other registers can be either in Invalid (INV) or Valid-
Safe (VS) states during the execution. 

The Invalid state indicates that the register’s contents is not 
longer valid, and cannot be used by a local processor or 
others. The Valid-Unsafe state indicates that a given register 
value is valid for current thread, but it is not a final, safe 
value than can be forwarded to successor threads. The Valid-
Safe state indicates that a given register value is valid for 
current thread, and it is also safe to be forwarded to successor 
threads. The Last-Copy state indicates that a given register 
value is the only copy of valid register value among all 
processor cores. Three bits (A0, A1 and A2) per register are 
provided in local scoreboard (Fig.1), one for distinguishing 
between loop-live and other registers and two for coding four 
states for loop-live registers. 

The processor core issues two types of requests: read (R) and 
write. Writes can be final (FW) and non-final (NFW). The 
control part of shared bus consists of BusR, BusW, Mask and 
Shared signals. 
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Bus-Read (BusR) transaction is a consequence of a processor 
read that misses in a local scoreboard. The read request is 
issued on the bus along with the mask code in order to get the 
requested register value. 

Bus-Write (BusW) transaction is a consequence of a processor 
write request when a speculative thread either reaches Valid-
Safe state for a given register, or when a register value in 
Last-Copy state is sent on the bus. The register value is put 
on the bus, so the consumer threads can load it. It is 
important to emphasize that in both cases the register value is 
transferred on the bus without previous request from the 
consumer threads. 

Mask signals are issued on the bus on read miss when a 
thread requests the appropriate register value from its closest 
predecessor. Each predecessor thread with requested register 
value in Valid-Safe state in its scoreboard replies by posting 
its mask on bus mask lines, which are realized as wired-OR 
lines. Consequently, the bus interface logic in each processor 
core can sense whether any other predecessor posted its mask 
on the bus. The mechanism of distributed arbitration chooses 
a closest predecessor thread, which is allowed to put the valid 
requested register value on the bus. 

Shared signal, which is also sent over a wired-OR bus line, is 
issued by a consumer thread when it responds to a non-
demand producer-initiated request for sending a register 
value, which has been found in Last Copy state. By raising 
this line, the producer is informed that the register value 
issued on the bus is loaded elsewhere and it ceases to be the 
last copy. 

3.3. SIC protocol state transitions 

The register-level communication in this proposal is based on 
SIC protocol states and transitions between them. The 
processor-induced and bus-induced state transitions for loop-
live registers in SIC protocol are presented in Fig.4. Since the 
registers are divided in two groups, loop-live and other 
registers, the SIC protocol considers them differently. The 
protocol mechanism for loop-live registers works as follows: 

(1) Read hit. If a thread, either speculative or non-
speculative, issues a read request (R) for a register in VU, VS 
or LC state, the request is satisfied locally and that register 
remains in the same state. 

(2) Read miss. A read request for a register in INV state 
causes the read miss and initiates BusR transaction. Read 
request will be issued on the bus along with the mask code of 
speculative thread. Consequently, read miss incurs a 
consumer-initiated inter-thread communication. All possible 
suppliers, i.e., predecessors (non-speculative thread or/and 
earlier speculative threads) that have a requested register 
either in VS or LC state, reply with issuing their mask codes 
on the bus and the mechanism of distributed arbitration 
chooses the latest predecessor. Then, the chosen predecessor 
thread supplies the requested register value over the bus. The 
requested register is loaded with VU state in the local 
scoreboard of the speculative thread that issued a read 
request. If the requested register was in LC state at the 
supplier’s side, it goes from LC state to VS state. If there is 
no supplier available at the moment when a consumer thread 
issued the read request on the bus, the consumer thread 
blocks. 

(3) Write Hit. If a register value is in VU state when a thread 
(either non-speculative or speculative) issues the write 
request and performs the non-final write (NFW), the register 
is updated locally and it remains in VU state. 

However, if a register value is in VU state when a processor 
issues the write request and performs the final write (FW), 
the register is updated and state is changed from VU state to 
VS state. Also, the final write incurs the producer-initiated 
communication by sending the register value on the bus for 
the immediate successor thread. If the value is loaded into the 
register of immediate successor, it raises Shared line 
informing the producer that the value is received. Also, if the 
successor was blocked waiting for this particular register 
value, it becomes running and continues the execution. If the 
shared line remains inactive (low), the producer changes the 
state for this register from VS to LC in the local scoreboard.  

(4) Write Miss. A thread’s non-final write (NFW) to a 
register value in INV state in a local scoreboard causes the 
write miss. However, the write miss does not cause the BusW 
transaction in this case, but only update the register value.  
Also, the register state is modified from INV state to VU 
state. 

INV

VU LC

VS

R, NFW

 FW

 FW/SL

NFW FW/SLBusR

BusW

FW/SH

R, FW
 

Fig.4. Producer-initiated and bus-induced state transitions 
for loop-live registers in SIC protocol. Notation A/B 
means that processor writes (final write - FW and non-
final write - NFW) are observed in relation to Shared 
signal either high or low (SH, SL). Processor reads 
are denoted with R. Dashed line style indicates bus-
induced state transitions. 

A write miss occurs also in case when a thread performs final 
write (FW) to a register in INV state. This causes the update 
of the register value and the change of its state from INV 
state to VS state. Also, write miss incurs a producer-initiated 
inter-thread communication in case of final write by issuing a 
BusW transaction on the bus. The producer thread puts the 
register value on the bus, so successor thread can read it. The 
actions are the same as in the case of write hit. 

The protocol mechanism for other registers works as follows: 
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(1) Read hit. If a register value is in VS state when a thread, 
either speculative or non-speculative, issues a read request, 
this hit is satisfied locally and the register remains in VS 
state. 

(2) Read miss. A thread’s read to a register that is in INV 
state causes the read miss and BusR transaction. Read request 
is issued on the bus along with a mask code of speculative 
thread. Also, read miss incurs a consumer-initiated inter-
thread communication. This case can happen only when a 
processor runs a speculative thread for the first time after 
some sequential section of the application. Then, non-
speculative or some predecessor thread supplies the requested 
register value. The requested register value is loaded in VS 
state with the consumer thread. Also, the other successor 
threads that have the same register in their local scoreboards 
in INV state snoop the bus and on this occasion load the sent 
value in VS state by means of Read Snarfing technique [8]. 

3.4. Thread initiation and completion 

When a processor initiates a new speculative thread (the most 
speculative thread) it is necessary to invalidate any loop-live 
register by setting their state to INV. However, the other 
registers remain in their current state during the new thread 
initiation. When a thread is about to complete, a search for 
last copies (LC state) in local scoreboard is carried out. The 
thread is allowed to complete only if there are no registers in 
this state. Otherwise, for each register in LC state its value 
must be saved by sending it over bus to its successor, in the 
same way as in the processing of final write in producer-
initiated communication. 

4. COMPARISON 

Quantitative evaluation of the SIC proposal is not carried out 
yet, but some qualitative comparison to IACOMA [7] (as an 
existing solution of the same kind) can be made. As for the 
hardware support for register-level communication, the SIC 
scheme significantly reduces the directory overhead as well 
as the overhead in extra logic for checking the register 
availability and last-copy status for each register. Besides, by 
means of mechanism of distributed arbitration, SIC protocol 
finds the closest predecessor in an easier and faster, non-
sequential way than in IACOMA. The proposed software 
support involves only minimal changes in the binary 
annotator tool for thread identification  

Also, the SIC protocol employs the Read-Snarfing technique 
in communication for non-looplive registers that decrease a 
number of misses in comparison to IACOMA and helps to 
validate the other registers more quickly.  

5. CONCLUSION 

The SIC proposal for register-level communication in CMP 
architecture is a solution for register-level communication 
based on the snoopy protocol which tries to improve over the 
existing solutions. It has been shown that hardware and 
software support for inter-register communication is quite 
acceptable and effective to provide correct speculative 
execution. The future research directions will be oriented 
towards qualitative evaluation of the proposed hardware 
support for register-level communication by simulation 
means. Also, some ideas has already appeared about 
modifying the protocol into the direction of more aggressive 

speculation by forwarding even possibly final write values in 
order to obtain further performance gain. Finally, an 
extension of the protocol functionality and making the binary 
annotator tool possible to deal with other kinds of 
speculations (e.g. subprogram calls, etc.) would be very 
desirable. 
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Sadržaj – Prednost postojanja podrške u spekulativnom 
multiprocesorskom sistemu na čipu (CMP) za komunikaciju 
na nivou registara je jasno pokazana u ranijim studijama. U 
ovom radu se predlaže SIC (Snoopy Inter-register 
Communication) protocol. On predstavlja hardverski 
mehanizam koji omogućava razmenu podataka na nivou 
registara i sinhronizaciju procesora u CMP sistemu preko 
zajedničke magistrale. Prvo je opisana neophodna softverska 
podrška za identifikaciju niti iz izvršnog koda sekvencijalne 
aplikacije koja sadrži dosta ciklusa. Onda su identifikovana 
stanja koja mogu imati registri koji se menjaju ili ne menjaju 
u nekoj niti kao i ostala infrastruktura potrebna za protokol. 
Zatim su detaljno opisane akcije protokola i prelazi između 
stanja pri komunikaciji iniciranoj od strane proizvođača i 
korisnika. Na kraju je dato grubo kvalitativno poređenje sa 
sistemom IACOMA koji pripada istoj klasi. 
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