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Abstract – Recent introduction of Linear Programming (LP) 
decoding and connections established between this method 
and iterative Belief Propagation (BP) decoding, motivates 
further exploration of LP decoding. Unlike BP decoding on 
code graphs with cycles, where convergence behavior of 
decoding process is still unexplained, LP decoding offers 
clear (geometric) interpretation. Some aspects of this 
interpretation are examined, commented and verified.   
 
1.  INTRODUCTION  

Codes defined on graphs and iterative BP decoding proved 
to be a capacity-approaching combination. The decade of 
theoretical research and simulation studies brought many 
explanations and insights into the BP decoding process. 
However, convergence behavior of BP decoding on a general 
code graphs with cycles (where BP decoding is known to be 
suboptimal) is very hard to characterize. In other words, for a 
given code, channel and BP decoder limited by some fixed 
number of iterations, the mapping of the decoder’s input 
space (i.e. channel output space) into the set of corresponding 
outputs characterized by their decoding regions is still not 
resolved using analytical tools. 

The great breakthrough in this area has been accomplished 
by complete characterization of BP decoding behavior in the 
case of the binary erasure channel (BEC), by introducing the 
notion of stopping sets [1]. Based on similar ideas, in the 
AWGN channel case, the concept of near-codewords or 
trapping sets was introduced [2]. Trapping sets yielded 
significantly to the general understanding of BP decoding and 
pointed out to the structures (subgraphs) in code graph to be 
avoided in code construction, but the complete 
characterization of the decoding regions in the AWGN case is 
still lacking.   

A related direction in understanding of the BP decoding  
behavior, that in a way generalizes the notions of stopping 
and trapping sets, is to investigate the pseudo-codewords of a 
particular graphs constructed appropriately from the code 
graph. This method was pioneered by Wiberg [3] who 
introduced the pseudo-codewords on computation trees, and 
later refined by Koetter and Vontobel [4] using graph covers. 
The pseudo codewords of the finite graph covers, that 
interfere with the “original” codewords defined by the code 
graph, have a simple geometric characterization given by a so 
called fundamental cone [4]. 

LP decoding [5] is a novel method for decoding codes on 
graphs. Formulated as a linear program, the decoding 
problem description is as complex as the description of the 
convex domain of optimization is. If we want optimal (ML 
decoding), the domain of optimization is the convex hull of 
all the codewords, which is of exponential descriptive 
complexity. Usual approach in efficiently solving such a 
problems is to introduce relaxations, i.e. to optimize over a 
less complex domain. In [5], appropriate relaxations are 
proposed for several classes of codes on graphs, including 
low-density parity-check (LDPC) codes that particularly 

attracts our attention. A new, relaxed domain of optimization 
is defined by a number of inequality constraints which is 
linear in the code length, which enables solving LP 
optimization even for a moderately sized code lengths, using 
quadratic complexity LP solving algorithms (simplex, 
interior-point). This complexity, however, is still not 
comparable with BP decoding. 

The reason why LP decoder is particularly interesting is in 
its convex domain of optimization, referred to as the 
fundamental polytope. It represents a convex polytope that 
includes all codewords as its vertices, but introduces even 
more (non-codeword) vertices that can be produced at the 
output of LP decoder. Together with the original codewords 
they form a set of LP pseudocodewords. Additionally, the 
fundamental cone associated with the fundamental polytope 
obtained by usual LP relaxation method for binary linear 
codes [5,6] is exactly the same fundamental cone that 
characterizes pseudocodewords on graph covers [4]. Tight 
relations between suboptimal behavior of LP and BP 
decoders is topic that receives a lot of attention [4,7] and 
deserves to be further investigated.    

The organization of this paper is as follows. Section 2 
gives a short introduction to the LP decoding. In section 3 
geometric interpretation of LP decoding regions is given. In 
section 4 fundamental aspects of LP pseudocode are analyzed 
and some illustrative examples are given. Concluding 
remarks are given in section 5. 

2.  LP DECODING [5] 

Standard problem of communication over the channel with 
noise is considered. As a channel model we could use any 
memoryless binary-input channel, but we will focus mainly 
on standard binary-input AWGN channel. 

A codeword x from a binary linear (n,k) code C is selected 
for transmission. The code is given by its m×n parity-check 
matrix H. In a special but significant case, when H is sparse, 
code C is called an LDPC code. At the channel output a 
vector y of elements of channel output alphabet is observed 
in accordance with the channel transition probabilities p(y|x). 
The decoder’s task is to make a guess x̂  of the codeword x 
selected at the input of the channel, given the output y.   

Optimal decoder in the case of equiprobable selection of  
codewords at the input of the channel is the maximum-
likelihood (ML) decoder that selects: 
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In a several steps [5] it is easy to transform (1) into a linear 
objective function, giving to the ML decoding an LP form: 
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where the convex domain of optimization is the convex hull 
of all codeword vectors of code C in Rn, CH(C), and � i is a 
log-likelihood ratio (LLR) value associated with the channel 
output yi: 
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Using (2), LP decoding fails to give a practical ML 
decoder due to an exponential number of constrains needed to 
describe CH(C). To achieve a practical decoder, the domain 
of optimization with linear number of constraints is needed. 
Obviously, this domain should contain all codewords from C 
as its vertices (and therefore, since convex, to contain the 
whole CH(C)). 

A standard way [6] to replace (relax) CH(C) of binary 
linear code C with appropriate polytope is as follows. First, a 
local code Ci is defined as a single-parity check (SPC) code 
defined by H i = [hi], where hi is i-th row of parity-check 
matrix H. CH(Ci) is convex hull of all codewords of Ci. Note 
that CH(Ci) is much larger object than CH(C) since its 
vertices are all vertices of unit n-hypercube except those that 
do not satisfy “parity-constraint” on a (usually) small subset 
of coordinates indicated by position of ones in hi. Then, a 
relaxed polytope P is defined as the intersection of convex 
hulls CH(Ci) of all local codes Ci, i = 1, …, m, i.e. 
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Having defined a new domain for optimization, the 
fundamental polytope P [6,4], an LP decoder produces x̂  
given �  = � (y) as: 
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Number of constraints needed to describe CH(Ci) grows 
exponentially with number of ones in hi (i.e. with Hamming 
weight wH(hi)). Therefore, number of ones per row of H of 
binary linear code C to be used with LP decoder should grow 
slower than linearly with n, as in the case of LDPC codes. 

 Fundamental polytope P contains CH(C) and therefore all 
the codewords of C as its vertices. Unfortunately, the set of 
all vertices of P is usually larger than C. Therefore, the LP 
decoder defined as (5) is suboptimal and the set of its 
possible outputs is the set of vertices V(P) of fundamental 
polytope P. We will refer to this set as LP pseudocode; the 
set of all LP pseudocodewords. Fortunately, the set of 
integral vertices (vertices with all coordinates taking values 
from set {0,1}) of LP pseudocode is exactly C, which gives 
to LP decoder a ML certificate property [5]: if LP decoder 
produces integral x̂  at its output, than x̂  is ML codeword. 
The set F(P) = V(P)\C is a set of non-integral or fractional LP 
pseudocodewords.   

3.  LP DECODING REGIONS 

The LP decoder is considered as a block in communication 
system. We assume that the input to this block is a vector � , 
so we are considering LLR input space. For an AWGN 
channel with parameter �, LLR space is linearly related with 
the channel output space (�  = 2y/�2) so we could equivalently 

take an AWGN channel output space (signal-space) as the 
input space. However, using LLR space as input space is 
more general (channel independent).  

Since LP solution is always a vertex of domain of 
optimization, the set of outputs from LP decoder is the set of 
pseudocodewords V(P). Therefore, LP decoder, as given by 
(5), is a function between following sets: 
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where D(
�
) is the set of all possible values of 
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that is obviously channel dependent (e.g. for AWGN channel 
D(

�
) = R, for BEC channel D(

�
) = {0,�}, etc.) 

For every LP decoder output x̂ � V(P) the LP decoding 
region w.r.t. pseudocodeword x̂  is defined as: 
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Of particular interest are the LP decoding regions w.r.t 
codewords from C. Since fundamental polytope P satisfies so 
called C-symmetry [5], it turns out that these are all the same, 
so it is possible to analyze only the one that corresponds to 
the all-zero codeword 0: 
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From (8) it is apparent that D0
LP is a convex cone with apex 

in origin. Most of the hyperplanes � x � 0 given in (8) are 
actually redundant. The set of the hyperplanes that describe 
the faces of  D0

LP are defined by a subset M(P) of V(P) that is 
called the set of minimal LP pseudocodewords [8], therefore: 
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It is interesting to relate the all-zero codeword LP decoding 
region D0

LP with the fundamental polytope P. In order to do 
this it is necessary to construct the so called conic hull of P. 
This object is known as the fundamental cone [4]: 

{{{{ }}}}PPK ∈∈∈∈≥≥≥≥==== xx ,| 0)( αα   (10) 

Edges of the fundamental cone are defined by the set of 
rays starting at the origin and going through the set M(P). 
Now, the convex cone D0

LP is exactly the dual cone of the 
fundamental cone K(P). The relations between different 
convex objects are sketched on a Figure 1. Additionally, it is 
important to note that every set defined so far is a function of 
only one mathematical object, the parity check matrix H [8]. 

 

Figure 1. LP decoding region 
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4.  LP PSEUDOCODE PARAMETERS 

From the previous section it is evident that word error rate 
performance (WER) of LP decoder is fully defined by the set 
M(P). However, for the bit error rate (BER) performance it is 
necessary to take into account the whole set V(P).  

In both cases, the influence of the particular 
pseudocodeword on the error performance for binary-input 
output-symmetric channels should be described by its 
“distance” from the transmitted codeword. We will consider 
only binary linear codes and symmetric decoders so the 
transmitted codeword is the all zero codeword 0, and the 
word “distance” is replaced with the word “weight”, i.e. 
distance from 0. In the case of binary linear code C and ML 
decoding, Hamming weight wH(x), x � C, is the distance 
metric of interest. For the pseudocodewords of suboptimal 
decoders (e.g. BP and LP) a generalization of this metric, 
called pseudo-weight, had to be introduced [3]: 
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where ||x||1 and ||x||2 are L1 and L2 norm of x respectively. It is 
clear that for integral x, the pseudo-weight reduces to a 
Hamming weight. 

For each pseudocodeword from M(P) or V(P) we have 
associated real number, the pseudo-weight. If the pseudo- 
codewords of M(P) or V(P) are classified according to this 
parameter, what results is the so called minimal pseudo-
weight spectrum and pseudo-weight spectrum respectively, 
usually presented in the form of histograms [8]. These are, 
from the code performance viewpoint, very useful graphical 
representations of an LP pseudocode. 

As a running example we have analyzed a particularly 
adequate dual Hamming (7,3,4) code defined by its parity 
check matrix H that does not have any length-4 cycles: 

1001100

0100110

0010011

=H       (12) 

Starting with local convex hulls CH(Ci) it is necessary to 
take each hi and translate it into the set of hyperplanes 
defining CH(Ci). To do this, it is necessary to define N(hi) as 
the set of positions of non-zero elements of hi, i.e. N(hi) = { j| 
hij = 1} (e.g. N(h1) = {1,2,5}). For every odd-element number 
subset T �  N(hi) we have a new hyperplane [5]: 
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The fundamental polytope P is obtained by taking into 
account all hyperplanes defined by (13) for all SPC local 
codes Ci, as given in (4). Finding all the vertices of P 
produces the set of all pseudocodewords V(P). This task is 
done for the dual Hamming (7,3,4) code and the results are 
listed in Table 1. In this table, the vertices of V(P) are given 
with their coordinates rescaled, in order to have integer 
values. This does not affect the pseudo-weight as defined in 
(11). To be more precise, all points (pseudo-codewords) 
belonging to the same edge of the fundamental cone K are 

characterized with the same pseudo-weight value and are 
therefore considered equivalent. 

N Pseudocodeword Pseudo-weight Set 
1 0 0 0 0 0 0 0 - C, M(P) 

2 1 1 1 0 0 1 0 4 C, M(P) 

3 0 1 1 1 0 0 1 4 C, M(P) 

4 1 0 1 1 1 0 0 4 C, M(P) 

5 0 1 0 1 1 1 0 4 C, M(P) 

6 0 0 1 0 1 1 1 4 C, M(P) 

7 1 0 0 1 0 1 1 4 C, M(P) 

8 1 1 0 0 1 0 1 4 C, M(P) 

9 0 1 2 1 1 1 0 4.5 F(P), M(P) 

10 0 1 1 1 2 0 1  4.5 F(P), M(P) 

11 0 1 1 1 1 0 0 4 F(P), M(P) 

12 1 0 1 1 1 0 2 4.5 F(P), M(P) 

13 0 1 0 1 1 1 2 4.5 F(P), M(P) 

14 0 1 1 1 2 0 3 4 F(P), M(P) 

15 1 0 1 1 1 2 0 4.5 F(P), M(P) 

16
11

0 1 1 1 0 2 1 4.5 F(P), M(P) 

17 0 1 2 1 1 3 0 4 F(P), M(P) 

18 2 1 1 1 0 0 1 4.5 F(P), M(P) 

19 2 1 0 1 1 1 0 4.5 F(P), M(P) 

20 3 2 1 1 1 0 0 4 F(P), M(P) 

21 1 2 1 1 1 0 0 4.5 F(P), M(P) 

22 0 2 1 2 1 3 3 5.14 F(P) 

23 3 1 2 2 1 0 3 5.14 F(P) 

24 3 1 1 2 2 3 0 5.14 F(P) 

25 3 2 2 1 2 3 3  6.4 F(P) 

26 2 1 1 1 2 2 1 6.25 F(P) 

27 2 1 2 1 1 1 2 6.25 F(P) 

28 1 2 1 1 1 2 2 6.25 F(P) 

Table 1 List of all pseudocodewords V(P) of dual Hamming code 

An interesting behavior of LP pseudocode noted in [5] is 
that adding redundant (linearly dependant with the existing 
set) parity-check tightens the fundamental polytope P, 
therefore increasing the performance of LP decoding. Since a 
larger number of parity-checks introduces more constraints 
into linear program, the cost for a better performance is 
increased complexity. 

Similar effect exists in the case of BP decoding. Adding 
more parity checks increases the reliability information 
gathered about each codeword bit, but processing that they 
introduce adds to the complexity of decoding process. 
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Figure 2. LP decoding region 

To present this effect visually we have appended one-by-
one the cyclic shifts of rows of H (12) that are redundant into 
a new H matrices, and observed the changes in the pseudo-
weight spectrum of the  pseudocodes. The results are given in 
the Figure 2, starting with the pseudo-weight spectrum of the 
pseudocode given in Table 1. 

It is interesting to note that for dual Hamming (7,3,4) code 
there are no LP pseudocodewords with pseudoweight lower 
than 4, which is the minimum distance of this code. 
Additionally, by increasing the number of redundant parity-
checks the effect of “pushing” the LP pseudocodewords 
toward larger pseudo-weights is evident. However, it is also 
evident that the introduced parity-checks haven’t contributed 
to the code graph with length-4 cycles, which certainly 
contributed to this effect. In a full 7-by-7 parity-check matrix 
version, this code is a member of a wider class of codes based 
on a finite geometries, precisely LDPC PG(2,2) Type-I code. 
Good performance of this class of codes with BP algorithm is 
well known, but their good behavior w.r.t. minimal 
pseudocodeword spectrum has been recently noted in [8]. 

5.  CONCLUSIONS 

In this paper we have examined both the geometric 
interpretation and the error performance contribution of the 
LP pseudocodewords of a binary linear code C, defined by its 
parity-check matrix H. As in the case of ML decoding and 
minimal codewords, the dominant effect on error 
performance is due to a set of the minimal pseudocodewords 
that are sufficient to describe the all-zero codeword LP 
decoding region D0

LP.  

Tight relations established so far between LP decoding and 
BP decoding contributed to the increased interest in LP 
decoding. Unlike BP decoding convergence, which is still 
only partially understood, LP decoder maps its inputs to the 
set of LP pseudocodewords in a clear fashion.  

Therefore, analyzing the LP pseudocode might be useful in 
the construction of codes to be used with BP decoding. By a 
careful design of the parity-check matrix H it should be 
possible to produce the fundamental polytope P with good 
pseudoweight spectrum, i.e. to push the pseudocodewords 

added by LP decoder to as larger values of pseudoweight as 
possible. This task might be complemented with the known 
efforts of optimizing LDPC code graph w.r.t. the existence of 
small stopping sets in order to achieve the optimal 
construction of LDPC codes.    
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O LP REGIONIMA DEKODOVANJA 

Dejan Vukobratovi�, Nemanja Deli�, Vojin Šenk Fakultet 
tehni�kih nauka, Univerzitet u Novom Sadu 

Sažetak – Nedavno objavljen metod dekodovanja linearnim 
programiranjem i veze utvr�ene izme�u ovog metoda i 
iterativnog BP dekodovanja su motivacija za prou�avanje 
ovog metoda. Za razliku od BP dekodovanja kodova �iji 
grafovi sadrže petlje i �ija konvergencija je još uvek nejasna, 
LP dekodovanje poseduje veoma jasnu (geometrijsku) 
interpretaciju. U ovom radu dati su komentari, potvrde i 
provere rezultata koji se ti�u geometrijske interpretacije LP 
dekododovanja.
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