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Abstract — Recent introduction of Linear Programming (LP)attracts our attention. A new, relaxed domain dfrojzation
decoding and connections established between ththad is defined by a number of inequality constraintsicivhis
and iterative Belief Propagation (BP) decoding, ivates linear in the code length, which enables solving LP
further exploration of LP decoding. Unlike BP deitmdon optimization even for a moderately sized code lesgtising
code graphs with cycles, where convergence behasior quadratic complexity LP solving algorithms (simplex
decoding process is still unexplained, LP decoddffgrs interior-point). This complexity, however, is stilhot
clear (geometric) interpretation. Some aspects bfs t comparable with BP decoding.

interpretation are examined, commented and verified The reason why LP decoder is particularly intengsts in

its convex domain of optimization, referred to dwe t
1. INTRODUCTION fundamental polytope. It represents a convex ppbtthat

Codes defined on graphs and iterative BP decodioged includes all codewords as its vertices, but intoadueven
to be a capacity-approaching combination. The deaaid more (non-codeword) vertices that can be produdethex
theoretical research and simulation studies broughty output of LP decoder. Together with the originatieaords
explanations and insights into the BP decoding ¢ssc they form a set of LP pseudocodewords. Additionathe
However, convergence behavior of BP decoding oareeil fundamental cone associated with the fundamentigtque
code graphs with cycles (where BP decoding is kntamwbe obtained by usual LP relaxation method for binanedr
suboptimal) is very hard to characterize. In othierds, for a codes [5,6] is exactly the same fundamental coreg th
given code, channel and BP decoder limited by stireel characterizes pseudocodewords on graph coversT[ght
number of iterations, the mapping of the decodémut relations between suboptimal behavior of LP and BP
space (i.e. channel output space) into the setroésponding decoders is topic that receives a lot of attenfii] and
outputs characterized by their decoding regionstils not deserves to be further investigated.

resolved using analytical tools. The organization of this paper is as follows. SettP

The great breakthrough in this area has been adistrag gives a short introduction to the LP decoding. éct®n 3
by complete characterization of BP decoding behavidhe geometric interpretation of LP decoding regiongiigen. In
case of the binary erasure channel (BEC), by inicod) the section 4 fundamental aspects of LP pseudocodaraigzed
notion of stoppingsets[1]. Based on similar ideas, in theand some illustrative examples are given. Concludin
AWGN channel case, the concept wéar-codewordsor remarks are given in section 5.
trapping setswas introduced [2]. Trapping sets yielde
significantly to the general understanding of Bleatkng and d2 LP DECODING [5]
pointed out to the structures (subgraphs) in codelyto be Standard problem of communication over the chawitél
avoided in code construction, but the completeoise is considered. As a channel model we coudd amy
characterization of the decoding regions in the ANM&se is memoryless binary-input channel, but we will focusinly
still lacking. on standard binary-input AWGN channel.

A related direction in understanding of the BP dticg A codewordx from a binary linearr(,K codeC is selected
behavior, that in a way generalizes the notionstopping for transmission. The code is given by ritsn parity-check
and trapping sets, is to investigate the pseudeworts of a matrix H. In a special but significant case, wheris sparse,
particular graphs constructed appropriately frore tode code C is called an LDPC code. At the channel output a
graph. This method was pioneered by Wiberg [3] whoectory of elements of channel output alphabet is observed
introduced the pseudo-codewords on computatiors,tr@ed in accordance with the channel transition probtdsip(y|x).
later refined by Koetter and Vontobel [4] usinggiecovers. The decoder’s task is to make a gu&ssf the codeword x
The pseudo codewords of the finite graph coverst thselected at the input of the channel, given the output y.
interfere with the “original” codewords defined tye code
graph, have a simple geometric characterizatioarghy a so
called fundamental cone [4].

Optimal decoder in the case of equiprobable selection of
codewords at the input of the channel is the maximum-
likelihood (ML) decoder that selects:

LP decoding [5] is a novel method for decoding eoda "
graphs. Formulated as a linear program, the degodin x =argmax p(y |x) . (D
problem description is as complex as the descriptibthe
convex domain of optimization is. If we want optingL  In @ several steps [9] it is easy to transform (1) into a linear
decoding), the domain of optimization is the convel of objective function, giving to the ML decoding an LP form:

all the codewords, which is of exponential desorgt n
complexity. Usual approach in efficiently solvingich a X=arg min A X,
problems is to introduce relaxations, i.e. to opémover a XBCH(C) 4= )

less complex domain. In [5], appropriate relaxaticare
proposed for several classes of codes on grapbkiding
low-density parity-check (LDPC) codes that partcly
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where the convex domain of optimization is the eontaull take an AWGN channel output space (signal-space) as the
of all codeword vectors of codg in R', CH(C), and/; is a input space. However, using LLR space as input space is
log-likelihood ratio (LLR) value associated withetithannel more general (channel independent).

Outputy: Since LP solution is always a vertex of domain of

p(y; |% =0) optimization, the set of outputs from LP decoder is th@fket
m ®3) pseudocodeword¥(P). Therefore, LP decoder, as given by

(5), is a function between following sets:
Using (2), LP decoding fails to give a practical ML

decoder due to an exponential number of constreaged to
describe CHC). To achieve a practical decoder, the domai
of optimization with linear number of constraintsrieeded. : ;
Obviously, this domain should contain all codewoirdsn C tgat) I: gt,)\fl(l)?UBSgCCEﬁggﬁg(i?ing?gt},(z'tg_')for AWEHnnel
as its vertices (and therefore, since convex, totain the
whole CHQ)). For every LP decoder outp € V(P) the LP decoding
region w.r.t. pseudocodewoix is defined as:

A =log

LP(4): D(A)" = V(P), (6)
{R/hereD(,l) is the set of all possible valuesiofLLR domain)

A standard way [6] to replace (relax) GEJ(of binary
linear codeC with appropriate polytope is as follows. First, a DLP ={)_|Lp(1) =;(} ={1|1E§($1I3(,Elx ¢;(’X|:|V(p)} @)
local codeC; is defined as a single-parity check (SPC) code
defined byH; = [h], whereh; is i-th row of parity-check  Of particular interest are the LP decoding regionst
matrix H. CH(C)) is convex hull of all codewords &f. Note codewords fronC. Since fundamental polytogesatisfies so
that CHC) is much larger object than CE) since its calledC-symmetry [5], it turns out that these are all shene,
vertices are all vertices of unmithypercube except those thatso it is possible to analyze only the one thatesponds to
do not satisfy “parity-constraint” on a (usuallypall subset theall-zero codeword:
of coordinates indicated by position of oneshjn Then, a i
relaxed polytopeP is defined as the intersection of convex D" ={4] 22 0,0x # 0,x OV (P)} (8)

hulls CHC) of all local code<Z;, i = 1, ....m, i.e. From (8) it is apparent that,f) is a convex cone with apex

m _ in origin. Most of the hyperplands< > 0 given in (8) are
P :ﬂCH(Ci) , i=1,..,m (4)  actually redundant. The set of the hyperplanes deatribe
i=1 the faces of B" are defined by a subsei(P) of V(P) that is

Having defined a new domain for optimization, th&alled the set of minimal LP pseudocodewords [&refore:

fu_ndamental polytopé [6,4], an LP decoder producés D? ={).|/1D<20,Elx #0.x0 M(P)}. (9)
givenk =A(y) as:
. It is interesting to relate the all-zero codewoRi decoding
% = arg minzli X (5) region " with the fundamental polytopR. In order to do
xOP 4= this it is necessary to construct the so calledccball of P.

_ _ This object is known as the fundamental cone [4]:
Number of constraints needed to describe GH{rows

exponentially with number of ones m (i.e. with Hamming K(P) ={ax|a 20,x0OP} (10)
weight wy(h;)). Therefore, number of ones per rowkbfof

binary linear code€ to be used with LP decoder should grow Edg?s t(')f thet ftlrjlndanje_ntal gone_ arethdefm(re]dﬂ:)y'\;he set of
slower than linearly witlm, as in the case of LDPC codes. rays starting at the orngmn and going throug ).
Now, the convex cone §J is exactly the dual cone of the

Fundamental polytopE contains CHC) and therefore all fundamental coneK(P). The relations between different
the codewords o€ as its vertices. Unfortunately, the set otonvex objects are sketched on a Figure 1. Additionally, it is
all vertices ofP is usually larger tha€. Therefore, the LP important to note that every set defined so far is a fundfion
decoder defined as (5) is suboptimal and the set of w&ly one mathematical object, the parity check madr{8].
possible outputs is the set of verticéd) of fundamental
polytope P. We will refer to this set as LP pseudocode; the
set of all LP pseudocodewords. Fortunately, the set of
integral vertices (vertices with all coordinates taking values
from set {0,1}) of LP pseudocode is exac@y which gives
to LP decoder &L certificate property[5]: if LP decoder
produces integrak at its output, thark is ML codeword.
The set~(P) = V(P)\C is a set of non-integral or fractional LP
pseudocodewords.

3. LP DECODING REGIONS

The LP decoder is considered as a block in communicatior
system. We assume that the input to this block is a vigctor
so we are considering LLR input space. For an AWGN
channel with parameter, LLR space is linearly related with
the channel output space¥ 2y/c®) so we could equivalently Figure 1.LP decoding region
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4. LP PSEUDOCODE PARAMETERS

From the previous section it is evident that word error ra{

Qerefore considered equivalent.

characterized with the same pseudo-weight value aned

performance (WER) of LP decoder is fully defined by the seN | Pseudocodeword Pseudo-weight Set
M(P). However, for the bit error rate (BER) performance itjsl | 0000000 - C, M(P)
necessary to take into account the whole/ge}. 2 | 1110010 4 C, M(P)

. . 3 0111001 4 C, M(P)

In both cases, the influence of the particular;——5777100 2 C.N(P)
pseudocodeword on the error performance for binary-inp@t——-7577110 7 C.MP)
output-symmetric channels should be described by [ts— 57107111 7 C.M(P)
“distance” from the transmitted codeword. We will consider; 75570711 2 C. M(P)
only binary linear codes and symmetric decoders so & 7100101 2 C,M(P)
transmitted codeword is the all zero codewérdand the g 121110 25 F(P), M(P)
word “distance” is replaced with the word “weight’, i.e[ 70 [ g111201 25 F(P), M(P)
distance fronD. In the case of binary linear co@eand ML 17 [g111100 2 F(P), M(P)
decoding, Hamming weightwy(x), x € C, is the distance [12 [ 1011102 15 F(P), M(P)
metric of interest. For the pseudocodewords of suboptimae 0101112 a5 F(P), M(P)
decoders (e.g. BP and LP) a generalization of this metfiggz [ 0111203 2 F(P), M(P)
called pseudo-weight, had to be introduced [3]: 15 1011120 45 F(P), M(P)

" "2 16 (0111021 45 F(P), M(P)

AWGN 7o _ Xl ¥l 0121130 4 F(P), M(P)

We OO'sz’ 1) g T2111001 45 FP), M(P)

2 19 [ 2101110 4.5 F(P), M(P)

where §|L and }|b are L and L, norm ofx respectively. Itis [ 20 | 3211100 4 F(P), M(P)

clear that for integrak, the pseudo-weight reduces to @21 | 1211100 4.5 F(P), M(P)
Hamming weight. 22| 0212133 5.14 F(P)
23 (3122103 5.14 F(P)

For each pseudocodeword frold(P) or V(P) we have |27 [ 3112230 514 F(P)
associated real number, the pseudo-weight. If theugo- [25 [ 3221233 6.4 F(P)
codewords ofM(P) or V(P) are classified according to thi§ 26 | 2111221 6.25 F(P)
parameter, what results is the so called minimauge- [27 [ 2121112 6.25 F(P)
weight spectrum and pseudo-weight spectrum res@deti [28 [ 1211122 6.25 F(P)

usually presented in the form of histograms [8]edJé are,
from the code performance viewpoint, very usefapdpical
representations of an LP pseudocode.

Table 1List of all pseudocodewords V(P) of dual Hammindeco

An interesting behavior of LP pseudocode notedsinig

As a running example we have analyzed a partigularfhat adding redundant (linearly dependant with éksting

adequate dual Hamming (7,3,4) code defined by atstyp
check matrixH that does not have any length-4 cycles:

(12)

Starting with local convex hulls CEY) it is necessary to

set) parity-check tightens the fundamental polytope
therefore increasing the performance of LP decodamgce a
larger number of parity-checks introduces more tairgs
into linear program, the cost for a better perfarom is
increased complexity.

Similar effect exists in the case of BP decodingdifg
more parity checks increases the reliability infation
gathered about each codeword bit, but processiagtttey

take eachh; and translate it into the set of hyperplaneintroduce adds to the complexity of decoding preces

defining CHC)). To do this, it is necessary to defiNgh,)) as
the set of positions of non-zero elementdpf.e. N(h;) = {j|

h; = 1} (e.g.N(hy) = {1,2,5}). For every odd-element number
subsefl ¢ N(h;) we have a new hyperplane [5]:

CH(C) ={x| Xx,+ 2 x <|N(h,)|-1,Vh} (13)
jeT jeN(hj \T
The fundamental polytop® is obtained by taking into
account all hyperplanes defined by (13) for all SB€al
codesC;, as given in (4). Finding all the vertices Bf
produces the set of all pseudocodewov@B). This task is
done for the dual Hamming (7,3,4) code and theltesue
listed in Table 1. In this table, the vertices\§P) are given
with their coordinates rescaled, in order to hamtedger
values. This does not affect the pseudo-weightedimet in
(11). To be more precise, all points (pseudo-coddsjo
belonging to the same edge of the fundamental ¢o@ee
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Figure 2.LP decoding region
To present this effect visually we have appendeetmn

one the cyclic shifts of rows ¢f (12) that are redundant into
a newH matrices, and observed the changes in the pseudo-

weight spectrum of the pseudocodes. The resudtgigen in
the Figure 2, starting with the pseudo-weight spmctof the
pseudocode given in Table 1.

It is interesting to note that for dual Hamming3(4) code
there are no LP pseudocodewords with pseudoweigtrrl

than 4, which is the minimum distance of this code.

Additionally, by increasing the number of redundpatity-
checks the effect of “pushing” the LP pseudocodelwor
toward larger pseudo-weights is evident. Howeveis also
evident that the introduced parity-checks haveatitabuted
to the code graph with length-4 cycles, which delya
contributed to this effect. In a full 7-by-7 paritheck matrix
version, this code is a member of a wider clagdes based
on a finite geometries, precisely LDPC PG(2,2) Fypede.
Good performance of this class of codes with B@rétlym is
well known, but their good behavior w.r.t.
pseudocodeword spectrum has been recently nofél in

5. CONCLUSIONS

In this paper we have examined both the geometric

interpretation and the error performance contrdwutf the
LP pseudocodewords of a binary linear c@gelefined by its

parity-check matrixH. As in the case of ML decoding and
error

minimal codewords, the dominant effect on
performance is due to a set of the minimal pseudiewords
that are sufficient to describe the all-zero codeiv&P
decoding region p".

Tight relations established so far between LP diacpand
BP decoding contributed to the increased interasiP
decoding. Unlike BP decoding convergence, whiclsti
only partially understood, LP decoder maps its iago the
set of LP pseudocodewords in a clear fashion.

Therefore, analyzing the LP pseudocode might b&iuse
the construction of codes to be used with BP dexpdy a
careful design of the parity-check matrix it should be
possible to produce the fundamental polytope P wiibd
pseudoweight spectrum, i.e. to push the pseudocrdsw
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added by LP decoder to as larger values of pselgbtvas
possible. This task might be complemented with khewn
efforts of optimizing LDPC code graph w.r.t. théstence of
small stopping sets in order to achieve the optimal
construction of LDPC codes.
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O LP REGIONIMA DEKODOVANJA

Dejan Vukobrato, Nemanja Deli, Vojin Senk Fakultet
tehnikih nauka, Univerzitet u Novom Sadu

SaZetak —Nedavno objavljen metod dekodovanja linearnim
programiranjem i veze utfene izméu ovog metoda i
iterativnog BP dekodovanja su motivacija za pfaxanje
ovog metoda. Za razliku od BP dekodovanja koddijia
grafovi sadrze petlje dija konvergencija je joS uvek nejasna,
LP dekodovanje poseduje veoma jasnu (geometrijsku)
interpretaciju. U ovom radu dati su komentari, pot i
provere rezultata koji secti geometrijske interpretacije LP
dekododovanja.



