
  

0 500 1000 1500 2000

50

100

150

200

250

300

BP
M

time epochs

 

 

ON INFORMATION-THEORETIC APPROACH TO HRV TIME-SERIES ANALYSIS 
 

Tatjana Lončar-Turukalo, Dept. of Communications and Signal Processing, Univ. of Novi Sad, tloncar@eunet.yu  
Dragana Bajić, Department of Communications and Signal Processing, University of Novi Sad, lmcdra@eunet.yu  

Nina Žigon, Medical Faculty, University of Belgrade, zigon@eunet.yu 
  

 

Abstract — HRV analysis represents one of the most 
promising and the most commonly used quantitative 
measures of the cardiovascular autonomic regulatory system. 
The analysis include traditional statistical analytical tools 
and a number of new methods based on nonlinear system 
theory, recently developed to give better insight into complex 
HR.. This paper deals with approximate entropy (ApEn), its 
drawbacks and improvements in order to assure statistical 
consistency of the obtained values.  

1. INTRODUCTION 
Heart rate variability (HRV) has become the 

conventionally accepted term to describe variations of 
interval between consecutive heartbeats, as well as the 

oscillations between consecutive instantaneous heart rates. It 
represents one of the most promising and the most commonly 
used quantitative measures of the cardiovascular autonomic 
regulatory system. The analysis include traditional statistical 
analytical tools both in time and spectral domain and a 
number of new methods based on nonlinear system theory, 
recently developed to give better insight into complex HR 
dynamics, such as  fractal correlation properties, the slope of 
the power law relation and approximate entropy (ApEn). 
These methods might reveal abnormalities that may not be 
uncovered by traditional measures. However, the significance 

and meaning of these different measures of HRV are more 
complex than generally appreciated, and there is a potential 
for incorrect conclusions and for excessive or unfounded 
extrapolations. Besides, in spite of general opinion that HRV 
time series is easy to obtain, visual inspection and careful 
manual editing after automatic extraction is absolutely 
necessary. For 24 hours’ holter signal it presents a 
cumbersome task. [1-4] 

This paper is devoted to the improvement of approximate 
entropy approach to HRV series analysis. The subsequent 
section gives a brief review of theory of ApEn and methods 
to reduce its bias (SampEn). The third section outlines further 
inconsistencies (from the information-theoretic point of 
view) of both ApEn and SampEn and proposes a method for 
its overcoming. The method is illustrated using analog ECG 
holter signal of a clinically healthy child recorded at 
Children’s hospital (Tirsova), digitalized and HRV extracted 
at FTN. A part of HRV signal (in beats per minute, BPM) is 
shown in Fig. 1  

2. APPROXIMATIVE AND SAMPLE ENTROPY 

 ApEn can be defined as a “regularity statistic” that 
quantifies the unpredictability of fluctuations in a time series. 
Intuitively, one may reason that the presence of repetitive 
patterns of fluctuation in a time series renders it more 
predictable than a time series in which such patterns are 
absent. 

 

 

 

 
 

 
 
 

Fig.1.   Sample of HRV time series 
 

ApEn reflects the likelihood that “similar” patterns of 
observations will not be followed by additional “similar” 
observations. Therefore, a time series containing many 
repetitive patterns has a relatively small ApEn; a less 
predictable (i.e., more complex) process has a higher ApEn. 
This measure is closely related to Kolmogorov-Sinai (K-S) 
entropy, a rate of changing the information.  

 For the evaluation of ApEn the following parameters 
have to be defined: 

• time series (in our case HRV) [u(j)], j=1,…,N; 
• “template” xm(i) = [u(i+k-1)], k = 1,…,m, 

i=1,…,N-m+1; 
• Distance: d(xm(i), xm(j)) = max|u(i+k-1)-u(j+k-

1)|, k = 1,…,m 
• N – time series length; 
• m – template length; 

The first m samples of HRV form the first template; the 
template is then compared to ALL N-m+1 adjacent m-tuples 
that can be formed of HRV signal. Number of m-tuples for 
which d(xm(1), xm(j)), j=1,…,N-m+1 is within the specified 
distance r are counted as a positive outcome “template 
match”, its number noted as B1. The procedure is repeated for 
the second template, yielding other numbers of template 
matches Bi, i = 2,…,N-m+1.  

The function 
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is average of the natural logarithms of the previous functions. 
The process is repeated for a sample longer templates, where 
Ai presents the number of template matches for the xm+1(i) 
template. 
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The entropy of the underlying process can be 
approximated as: 
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    This definition, known as Eckman-Ruelle (E-R) 
entropy formula for “direct” evaluation of K-S entropy, is 
obviously not suited for the finite data sets analysis. Instead 
of it, its approximate measure is introduced: 

)()(),,(ApEn 1 rΦrΦNrm mm +−=       (6) 

 However, it is soon noticed that counting self-matches 
introduces a bias in ApEn statistics: if values Eqs. (1) and (3) 
equal to 0, a logarithm of 0 would appear in (2) and (4). To 
avoid this, each “self-template” match is included into 
counts. But, in practice, this bias causes ApEn to lack two 
important expected properties. First, ApEn is heavily 
dependent on the record length and is uniformly lower than 
expected for short records. Second, it lacks relative 
consistency. That is, if ApEn of one data set is higher than 
that of another, it should, but does not, remain higher for all 
conditions tested. This shortcoming is particularly important, 
because ApEn has been repeatedly recommended as a 
relative measure for comparing data sets [1,2 and references 
listed in 3].  

 To reduce this bias, a new family of statistics, sample 
entropy (SampEn), that does not count self-matches, is 
developed [3]. The quantities Bm(r) (the probability∗ that two 
sequences will match for m points), and Am(r) (the 
probability that two sequences will match for m+1 points are 
evaluated as: 
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 The SampEn is then estimated as: 
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 Figs. 2, 3 and 4 present an ApEn and SampEn family 
of curves, using a HRV time series of a clinically healthy 
child. As ApEn and SampEn might be heuristically defined 
as measure of the logarithmic likelihood that patterns that are 
close remain close on next incremental comparison definition 
of ApEn, it is expected (and mathematically proved [1]) that 
the measures do not depend on m. Although the differences 
can be explained by the fact that N should be at least 10m to 
obtain significant results, and for small r there are not enough 
matches to ensure statistical consistency, for differences 
                     
∗Comments would be given within the following section;  

where r is close to 1 (this is a normalised difference; actually, 
template match is performed against the factor r·σ, where σ 
is the standard deviation of the series).  

3. ESTIMATION IMPROVEMENT 

 Starting with E-R entropy that was, originally, 
designed as a average of (log) of conditional probability that 
|u((j+m+1)-u(i+m+1)|≤r, given that |u((j+k-1)-u(i+k-1)|≤r, k = 
1,…,m a measure of correlation dimension is designed that 
was, later on, proved to be of no significance. However, 
ApEn and SampEn estimate likelihood that patterns of 
certain length that are close one to another would remain 
close if the pattern length increase. In this case, when the 
distance of patterns is of significance and the distance of 
samples (important for correlation properties) is not, mean 
squared difference rather than maximal absolute value might 
be better choice for pattern distance measure. 
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 The same reasoning as for preference of the expected 
value for best approximation of a random variable vs. its 
median value applies. 

 Figures 5, 6 and 7. illustrate the application of this 
measure. A slight improvement might be noticed indeed. For 
ApEn, plots for various values of m keep tightly, especially 
for r>0.3. SampEn seems to be more splashed, until it is 
noticed that mean sqrt. distance enables existence of more 
points for lower values of r. But, improvement is not so great 
to verify increase of CPU time for distance evaluation.  
 The next notion, however, is of more serious nature. Let 
us return to estimate of “probability that patterns are within a 
certain distance of each other”, Ai or Bi. These estimates are 
performed using the sliding window approach that is 
supposed to average all the events. However, deep 
mathematical analyses performed and published by various 
authors including this one [5-9] show that this is a biased 
approach: test are, obviously, statistically dependent and 
therefore cannot estimate the probability of an event. 
Therefore, the proposed estimates of these probabilities 
should be performed by random testing. 
 In this investigation, two approaches are tried, one with 
random testing (with the restriction that no sample would 
appear within a single test more than once), and “window by 
window”, further illustrated in Fig. 8. The first one , 
however, needs more CPU time yielding less test samples. 
Since it is clear that self-matching should be excluded, only 
SampEn approach is used. 
 The counting procedure “window-by-window” starts with 
TEST 1 (Fig. 8) before and after the template. For the second 
testing position, window slides m+1 samples, for the third 
further m+2 to avoid eventual ciclostacionarity of a process 
etc. Then the obtained values are averaged and the second 
shift is performed, this time starting a sample apart from 
template position, etc.  
 From the results plotted in Fig. 9 and 10 it is obvious that 
SampEn is not dependent upon m when estimated as 
proposed. Furthermore, estimated values of entropy is higher 
than the ones obtained by sliding window – quite in 
accordance with the notion that sliding window tests 
correspond to Markov sources, while window-by-window 
tests are memoryless thus yielding higher entropy values. 
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Fig.2.   ApEn(m,r,N) – abs. distance 
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Fig. 3.   SampEn(m,r,N) – abs. distance 
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Fig. 4.   ApEn and SampEn – abs. distance 

 
 
 

Other comparative measure is normalized standard deviation, 
plotted in Fig. 11. The plots are not smooth due to 
(relatively) small statistical sample, but decrease obtained by 
the proposed method is obvious.  
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Fig.5.   ApEn(m,r,N) - mean sq. root distance 
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Fig.6.   SampEn(m,r,N) - mean sq. root distance 

 

2 4 6 8 10 12 14 16 18 20 22
1E-4

1E-3

0.01

0.1

1

10
distance: mean sqrt

 ApEn, r = 0.8
 ApEn, r = 0.2
 ApEn, r = 0.06
 SampEn, r = 0.8
 SampEn, r = 0.2
 SampEn, r = 0.06

Ap
En

 a
nd

 S
am

pE
n 

m

 
Fig 7.   ApEn and SampEn - mean sq. root distance.  
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Fig. 8.   “Window by window” sliding procedure 
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Fig. 9.   SampEn(r) – window-by-window estimates 
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 Fig. 10.   SampEn(m) – window-by-window estimates 
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 Fig. 11.   Standard deviation of different m values 
 
4. CONCLUDING REMARKS 
 There exists a growing interest in the development of new 
measures to describe the dynamics of psychological systems 
and use of these measures to distinguish healthy function 
from disease or to predict the onset of adverse health-related 
events. While many authors claim spectacular results within 
the fields of diagnosis and prediction, some do warn about 
impossibility to use any of the method automatically and 
straightforwardly. 
 This paper has not touched the clinical interpenetration 
yet. It has concentrated upon removing the (more or less) 
obvious shortcomings in probabilistic averaging. Even the 
completely statistically coherency has not been established 
yet: the parameter r is scaled with standard deviation in all 
the papers dealing with the topic; however, the HRV time 
series is not a stationary process; that is the reason why 
classical moment statistics can not be applied and various 
non-linear methods including ApEn and SampEn become so 
important. And yet, a classical parameter (the one that 
requires stationarity to be evaluated) is used in a non-linear 

model introduced because of the non-stationarity of the 
signal! 
 Further research would include more multi-disciplinary 
study of the topic.  

 
REFERENCES 
[1] S.M. Pincus: “Approximate entropy as a measure of 

system complexity”, Proc Natl Acad Sci USA;Vol. 88:pp 
2297-2301, 1991 

[2] A.L. Goldberger, S.M. Pincus: “Physiological time-series 
analysis: What does regularity quantify?” Am J Physiol,  
Vol. 266(Heart Circ Physiol), pp H1643-H1656, 1994.  

[3] J.S. Richman, J.R. Moorman: “Physiological time-series 
analysis using approximate entropy and sample entropy” 
Am J Physiol Heart Circ Physiol Vol. 278(6), ppH2039-
H2049, 2000.  

[4] L.A. Lipsitz: “Dynamics of Staility”, J. of Gerontology, 
Vol. 57A, No3, pp. B115-B125, 2002.  

[5] T. McConell: “The Expected Time to Find a String in a 
Random Binary Sequence” 
[http://barnyard.syr.edu/cover.pdf], January 2001. 

[6] D. Bajić, D. Drajić: “Duration of search for a fixed 
pattern in random data: Distribution function and 
variance”, Electronics Letters, 1995, Vol. 31. No. 8, pp 
631-632. 

[7] D. Bajić, J. Stojanovic and J. Lindner: “Multiple 
Window-sliding Search”, Proceedings of 2003 IEEE 
International Symposium on Information Theory ISIT-
2003, Yokohama, Japan, June 2003, pp 249.  

[8] D. Bajić, J. Stojanović: “An Analysis of the Search 
Process for Different Patterns in Random Data”, 
Proceedings of IEEE Region 8 EUROCON 2003 
Ljubljana, Slovenia, September 2003 

[9] D. Bajić, J. Stojanovic: “Distributed Sequences and 
Search Process”, IEEE International Conference on 
Communications – ICC2004, Paris, France, June 2004. 

 
Sadržaj – U današnje vreme postoji rastući interes za razvoj 
novih metoda koje bi opisivale dinamiku bioloških sistema i 
dale mogućnost što jasnijeg razlikovanja zdravog od 
patološkog funkcionisanja ili mogućnost predviđanja i 
uočavanja začetaka patoloških procesa u organizmu. Analiza 
signala promene srčanog ritma (u tekstu HRV – Heart Rate 
Variability signal) jedna je od najčešće korišćenih 
kvantitativnih merenja kardiovaskularnog autonomnog 
regulatornog sistema. Ova analiza uključuje kako metode 
tradicionalne statističke analize, tako i više novih metoda, 
baziranih na teoriji nelinearnih sistema, a razvijenih upravo 
radi boljeg uvida u kompleksni signal koji prikazuje rad srca. 
U ovom radu predstavlja se jedna od metoda analize HRV 
signala tzv. metoda aproksimirane entropije (Approximate 
Entropy), ukazuje se na njene nedostatke i prikazuje 
mogućnost njenog poboljšanja u cilju postizanja statističke 
konzistentnosti dobijenih rezultata. 
 U okviru rada nije se došlo do  kliničke interpretacije 
postignutih rezultata. Rad se prevashodno koncentrše na 
otklanjanje očiglednih nedostataka na polju probabilističkih 
usrednjavanja.  
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