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Abstract — HRV analysis represents one of the most 
promising and the most commonly used quantitative 
measures of the cardiovascular autonomic regulatory 
system. The analysis includes traditional statistical 
analytical tools and a number of new methods based on 
nonlinear system theory, recently developed to give better 
insight into complex HR signals. This paper compares a new 
direct sequential analysis  to the existing sequential analysis, 
in trials to penetrate the characteristics of children’s HRV.  

1.  INTRODUCTION 

Heart rate variability (HRV) has become the 
conventionally accepted term to describe variations of interval 
between consecutive heartbeats, as well as the oscillations 
between consecutive instantaneous heart rates. It represents 
one of the most promising and the most commonly used 
quantitative measures of the cardiovascular autonomic 
regulatory system. The analysis include traditional statistical 
analytical tools both in time and spectral domain and a 
number of new methods based on nonlinear system theory, 
recently developed to give better insight into complex HR 
dynamics, such as fractal correlation properties, the slope of 
the power law relation and approximate entropy (ApEn). 
These methods might reveal malign abnormalities at early 
stage that may not be uncovered by traditional measures. 
However, the significance and meaning of these different 
measures of HRV are more complex than generally 
appreciated, and there is a potential for incorrect conclusions 
and for excessive or unfounded extrapolations. Besides, in 
spite of general opinion that HRV time series is easy to obtain, 
visual inspection and careful manual editing after automatic 
extraction is absolutely necessary. For 24 hours’ holter signal 
it presents a cumbersome task. [1-4] 

This paper discusses the possibility of application of 
various analyses based upon the sequence matching 
including the original, recently developed, one to children’s 
HRV signals. The subsequent section gives a brief review of 
some of the existing methods based upon a template 
(sequence) matching. The third section gives a theoretical 
approach to the new direct sequence evaluations. The method 
is illustrated using analog ECG holter signals of clinically 
healthy children recorded at Children’s hospital (Tirsova) are 
digitalized and HRV extracted at Faculty of Technical 
Sciences, Novi Sad.  

2.  SEQUENCES AND TEMPLATES 

 The HRV signal samples form a vector of length L, 
denoted by y = [y(j)], j=1,…,LS. An analytical approach based 
upon the sequence (template) matching try to unveil if the 
similar set of samples is followed by other similar set of 
samples. Therefore, a “sequence” (or a “template” of length N 
is defined as a short vector xN(i) =  [y(i+k -1)], k  = 1,…,N, 
i=1,…,LS-N+1 that is a part of a long time series. For each pair 
of sequences a distance d(xN(i), xN(j)), i,j=1,…,LS-N+1 is 
defined. It can be maximal absolute distance, mean square 
distance or any other distance suitable for the current 
investigation. 

2.1. Approximate entropy and its modifications 

ApEn can be defined as a “regularity statistic” that 
quantifies the unpredictability of fluctuations in a time series. 
Intuitively, one may reason that the presence of repetitive 
patterns of fluctuation in a time series renders it more 
predictable than a time series in which such patterns are 
absent. A time series containing many repetitive p atterns has 
a relatively small ApEn; a less predictable (i.e., more complex) 
process has a higher ApEn. Therefore, ApEn estimates 
likelihood that patterns of certain length that are close one to 
another would remain close if the pattern length increases. 
The procedure for its evaluation from a time series y is simple: 
number of N-tuples (and N+1-tuples) for which d(xN(i),xN(j)), 
i,j=1,…,LS-N+1 is within a specified distance r are counted an 
processed: 
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where )(rC N
i

estimates the probability that any sequence xN(j) 
is within a distance r from the template xN(i). Then the 
approximate entropy can be estimated as: 
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Since this approach has its unbiased [4] and uncorrelated 
[5] modifications that yield different values (as could be seen 
in Fig. 1), the results cannot be regarded as reliable , so they 
are excluded from this research.   

2.2. Correlation dimension approach – DC 

 Correlation dimension estimates fractal dimension of an 
attractor from a time series. An attractor dimension itself 
shows a statistical measure of the self-similarity of the 
geometry of the sets of points in the phase space, i.e. the 
number of degrees of freedom necessary to describe a 
process. In our case, each sequence (N-tuple) is a point in an 
N-dimensional phase space. DC is estimated from a time series 
using the correlation integral CN(r) that measures the number 
of points correlated with each other in a sphere of radius r 
around the point xN(i) [6]: 
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This quantity is similar to probability estimate (Eq (1)). The 
differences are a) triangular rather than rectangular  
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Fig. 1. Entropy for child “L”: Approximate (upper), sample 
(middle), sliding (lower part) 

 

summation; b) squared instead of max. absolute distance; and 
c) for an ApEn approach, standard deviation of each separate 
signal is used as a scaling factor for r.  

The correlation dimension is evaluated as: 
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Its value can be obtained by plotting ld(CN(r)) vs. ld(r). 
The slope of the resulting straight lines, for different N, tends 
to constant value DC, as explained in [6].  

The DC analysis is closely related to multifractal property 
of HRV signal. Contrary to the monofractal signals  that are 
homogeneous, multifractal signals can be decomposed into 
many subsets. The statistical properties of the different 
subsets are characterized by local Hurst exponents h that 
shows  the local singular behavior and can be quantified by 
the function D(h)  - fractal dimension of the subset of the time 
series [7]. 

2.3. Illustrative examples and a note on stationarity 

As previously mentioned, HRV time -series are obtained 
from the children’s ECG, known to be extremely non-
stationary and mutually different (although healthy). From 
each 24h signals two 15 min HRV sub-series were chosen, the 
ones that seemed (by mere visual inspection of medical 

doctor’s eye) to be stationary. To verify the assumption, a 
stationarity test is performed [8]. 

Each HRV series is divided into K intervals. For each 
interval a mean value mi and variance σi

2:are estimated, i = 
1,…,K. Then the following sums are evaluated, both for mi and 
σi

2: 
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 The acceptance region for the stationarity hypothesis at a 
α level of significance was considered done by: 

  ].[ 2/;2/1; αα KK AAA <<−  

The corresponding border values 2/1; α−KA  and 2/;αKA  are 

obtained from discrete distribution function: 

 2/)1(,,0},Pr{ −⋅== KKiiA L .  

   (6) 

This probability was not available in [8], but it can be 
obtained knowing that probability that exactly b elements 
exceeds the value of (K-n)th element, given that m elements in 
total exceeds the value of (K-n)th one: 
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Table 1: Values of A for m and σ2; for α=0.05 and K=10 

values should be 11<A<33 

Only 5 of time series passed both tests with α=0.05 level 
of significance (underlined values in Table 1). . 

 Fig. 2 shows the correlation dimension – dashed lines for 
non-stationary series. It is interesting to note that it was not 
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possible to extract DC – neither automatically, nor manually, 
for one subject. Fractal dimension, again with dashed lines 
representing the non-stationary data, is shown in Fig. 3. Thick 
lines show the examples that fit the best and the worst the 
stationarity hypothesis.  

It is known that children’s HR is extremely variable. From 
the above figures no conclusions can be done. The fact that 
the children are healthy is according to the children’s 
cardiologist opinion.  

 

 

 
 

 

 

 
 

Fig. 2. Correlation dimension DC 
 

   

 

 
 

 

 

 
 

Fig. 3. Fractal dimension D(h) 

 

3.  DIRECT SEQUENTIAL ANALYSIS  

 Direct sequential analysis deals with the analysis of time 
parameters of the observed signals – the expected value of 
time units (number of samples) between the predefined set of 
M sequences (templates), and expected number of time units 
from the random starting position until one of the predefined 
M sequences is found. The first time distance is of the first 
type, the other one of the second type. The set of M 
sequences (templates) under consideration are the ones that 
match a certain criterio n. For introductory explanation of this 
new analytical approach, the criterion for forming the 
sequence set would be the criterion of “smoothness” - the 
expected number of “rough” samples between the “smooth” 
intervals. 

3.1. Time parameters and empirical series 

 Suppose that the HRV signal is shown in Fig. 4 and the 
smooth intervals are the ones for which the absolute value of 
sample do not exceed certain level. “Smooth” sequence of 
length N is the one that does not contain  

more than L excursions beyond this specified level. If L is the 
number of allowed excursions, there would be exactly M 
different types of predefined sequences:  

 

 

 

 

 

 

 

 

 

 

Fig. 4. HRV signal, “smooth regions” and binary signal  

∑
=







=

L

n n

N
M

0

.    (9) 

Similarly to (1) and (3), it is defined 
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 Then a sample time span between “smooth” intervals can 
be obtained as: 
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for the time distance of the first type, and for the time distance 
of the second type, the same sample time would be:  
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 Averaging the sample times does the estimate of the 
corresponding mean times. If imax is the position of the last 
“smooth” interval within the time series, and 
 Averaging the sample times does the estimate of the 
corresponding mean times. If imax is the position of the last 
“smooth” interval within the time series, and  
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numbers of “smooth” intervals, then the corresponding 
estimates of mean times of type 1 and 2 are: 
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 The main advantage of the direct sequential analysis is 
that the tests against surrogate  data, disputed by many, and 
is avoided: there exists a theory against which it could be 
compared.  

4. EXAMPLES AND DISCUSSION 

 For an illustrative example, some of the numerous results 
are shown in Fig. 4. Distance r is, through this investigation, 
normalized by standard deviation (the same as suggested for 
ApEn approach). Distance values for measured data are 
constrained by series length LS: if its value is, e.g., 3000, then 
mean value cannot be greater. Upper part of figure 4 shows 
the absolute value of type 1 time; middle part – a relationship 
between the measured and theoretical data of type 1 
evaluated as  
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Most of the subjects had a positive relative error (26). an i.e. 
empirical value of mean time necessary to reach the smooth 
region is  shorter for empirical sequences. The lower part 
compares theoretical and measured values of type 2 time 
distance, plotting the values 
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The measured data are in perfect accordance with the 
theoretical ones (this was not the case with time of type 1). 
The only exception was subject D1, who possess some other 
interesting properties: it was not possible to extract the 
correlation dimension, neither automatically nor manually. 
Besides, its value for distance type 1 has an interesting shape.  

 The results are promising, although no firm conclusion 
can be made: the children’s data are variable and there was 
neither diagnosis, nor a medicine applied, influence of which 
could be observed within our data. Therefore, future 
investigation would be based upon laboratory rats  with 
applied treatment (already in progress).  
 
AKNOWLEDGMENT 

The authors are grateful to Prof. Goran Vuko manovic who has 
kindly provided the children’s signals, and to Tanja Loncar 
and Vladimir Minic that have extracted HRV signals and then 
performed a cumbersome task to correct the errors inherent to 
commercial software. The research was performed with the aid 
of the research grant 1774.  
 
REFERENCES  

[1]  S.M. Pincus: “Approximate entropy as a measure of system 
complexity”, Proc Natl Acad Sci USA;Vol. 88:pp 2297-2301, 
1991 

[2]  A.L. Goldberger, S.M. Pincus: “Physiological time-series 
analysis: What does regularity quantify?” Am J Physiol,  Vol. 
266 (Heart Circ Physiol), pp H1643-H1656, 1994.  

[3]  J.S. Richman, J.R. Moorman: “Physiological time-series analysis 
using approximate entropy and sample entropy” Am J Physiol 
Heart Circ Physiol Vol. 278(6), ppH2039-H2049, 2000. 

[4]  T.Loncar, D. Bajic, N. Zigon: “On Information-Theoretic 
Approach To Hrv Time-Series Analysis”,  48. Konferencija 
ETRAN-a, Cacak, juni 2004. 

[5]  R. Karvajal et al.: “Dimensional Analysis of HRV in 
Hypertrophic Cardiomyopathy Patientes”, IEEE Engineering in 
Medicine and Biology, 21(4), pp 71-78, July 2002.  

[6]  Plamen Ch. Ivanov et al.: Multifractality in human heartbeat 
dynamics”, Nat ure, Vol. 399, pp 461-465, June 1999.  

[7]  Bendat and Piersol: Random data analysis and measurement 
procedures, New York – Wiley Interscience, 1986.  

[8]  D. Bajic, C. Stefanovic, D. Vukobratovic: “On probabilistic 
approach to bifix indicators”, Proceedings of 2003 IEEE 
International Symposium on Information Theory ISIT-2005, 
Australia, July 2005,  

[9]  D. Bajic: "New simple method for solving first passage time 
problem", Electronics Letters, 1991, Vol. 27. No. 16, pp 1419-
1421. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Results of the sequencial analysis, type 1 and 2  
 

Sažetak — Analiza promenljivosti srcanog ritma predstavlja 
jednu od najcešcih kvantitativnih metoda za merenje 
autonomne regulacije kardiovaskularnog sistema. Analize 
ukljucuju tradicionalne statisticke postupke ali i brojne 
nove metode zasnovane na nelinearnim teorijama. U ovom 
radu se porede rezultati dobijeni poznatim metodama 
sekvencijalnog uopredivanja i nove metode koja ne zahteva 
poredenje sa veštacki generisanim signalima.  
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