ANALIZA POLJA SIMETRIČNE ARHIMEDOVE SPIRALE METODOM NAJMANJIH KVADRATA

Ana Jovanović, Svetozar Jovićević, Elektrotehnički fakultet u Podgorici

Sadržaj – U ovom radu je demonstrirana primjenljivost MNK u analizi polja simetrične Arhimedove spirale. Pokazalo se da se sa malim brojem baznih funkcija veoma dobro zadovoljava granični uslov, što dobijene rezultate čini pouzdanim. Dobijeno je polje spirale u dalekoj zoni.

1.UVOD

Za analizu antenskih formi najčešće se koristi metod momenata, čija suština jeste u tome da se antena dijeli na veliki broj malih segmenata sa vrijednostima struje u njima kao nepoznatim veličinama (vidi na pr. [1],[2],[3]) što dovodi do rada sa matricama vrlo visokog reda. U poslednje vrijeme sve više se koristi metod konačnih razlika u vremenskom domenu (vidi na pr. [4],[5],[6]) u kome je jedan od osnovnih problema određivanje vještačke granice na kojoj se završava numerička procedura. Predstavljanje polja antene sistemom sopstvenih funkcija ([7]) dovodi kod analize polja u bliskoj zoni, čak i kod najjednostavnijih struktura do vrlo složene procedure.

U ovom radu će biti demonstrirana mogućnost primjene MNK u analizi polja simetrične Arhimedove spirale. Potencijal polja se predstavlja kao linearna kombinacija baznih funkcija talasne jednačine, a nepoznati koeficijenti razvoja se traže zadovoljenjem graničnog uslova na samoj spirali. Ovaj metod, u izvornoj ili modifikovanoj formi, pokazao se veoma prost i tačan na nizu različitih problema (vidi na pr. [8],[9],[10],[11],[12],[13]).

2.OPIS PROBLEMA I PRIMIJENJENOG METODA

Neka je zadata antenska struktura (slika 1.) koja leži u ravni xoy ($\theta = \frac{\pi}{2}$). Antena se napaja izvorom prostoperiodičnog napona U.

Slika 1. Simetrična Arhimedova spirala

Antenska struktura oblika Arhimedove spirale ima dva kraka čija geometrija je opisana sledećim jednačinama u sfernom koordinatnom sistemu:

$$r = a\varphi \sqrt{2K\cos\varphi + 1 + k^2} + b \quad 0 \le \varphi \le 2m\pi \quad \text{gornji krak} \tag{1}$$

 $r' = a(\phi - \pi)\sqrt{-2K\cos\phi + 1 + k^2} + b \ \pi \le \phi \le (2m+1)\pi$ donji krak gdje je $a = \frac{\Delta}{2\pi}$ konstanta spirale, b je koordinata početne tačke, *k* je ekscentričnost spirale. Za k = 0 imamo simetričnu Arhimedovu spiralu:

$$r = a\varphi + b \quad 0 \le \varphi \le 2m\pi \quad \text{gornji krak}$$
(1.a)
$$r' = a(\varphi - \pi) + b \quad \pi \le \phi \le (2m+1)\pi \quad \text{donji krak}$$

U najopštijem slučaju polje zračenja, bilo u bliskoj ili dalekoj zoni, ne pripada niti TE ni TM talasu. Da bi našli komponente polja zračenja uvešćemo oba vektorska

potencijala, tj magnetni i električni vektor potencijal:

$$A_{r} = \sum_{m} \sum_{n} C_{mn} B_{n}(kr) P_{n}^{m}(\cos\theta) e^{jm\varphi}$$

$$F_{r} = \sum_{m} \sum_{n} D_{mn} B_{n}(kr) P_{n}^{m}(\cos\theta) e^{jm\varphi}$$
(2)

gdje su C_{mn} i D_{mn} nepoznati koeficijenti razvoja, $B_n(kr)$ Besselove f-je i $P_n^m(\cos\theta)$ Ležandrovi polinomi.

Komponente polja date su sledećim izrazima [14]:

$$E_{r} = \frac{1}{j\omega\varepsilon} \left(\frac{\partial^{2}}{\partial r^{2}} + k^{2} \right) A_{r} \qquad H_{r} = \frac{1}{j\omega\mu} \left(\frac{\partial^{2}}{\partial r^{2}} + k^{2} \right) F_{r}$$

$$E_{\theta} = \frac{-1}{r\sin\theta} \frac{\partial F_{r}}{\partial \varphi} + \frac{1}{j\omega\varepsilon r} \frac{\partial^{2}A_{r}}{\partial r\partial \theta} \qquad H_{\theta} = \frac{1}{r\sin\theta} \frac{\partial A_{r}}{\partial \varphi} + \frac{1}{j\omega\mu r} \frac{\partial^{2}F_{r}}{\partial r\partial \theta} (2.a)$$

$$E_{\varphi} = \frac{1}{r} \frac{\partial F_{r}}{\partial \theta} + \frac{1}{j\omega\varepsilon r\sin\theta} \frac{\partial^{2}A_{r}}{\partial r\partial \varphi} \qquad H_{\varphi} = -\frac{1}{r} \frac{\partial A_{r}}{\partial \theta} + \frac{1}{j\omega\mu r\sin\theta} \frac{\partial^{2}F_{r}}{\partial r\partial \varphi}$$

Granični uslov jeste anuliranje tangencijalnih komponenti električnog polja na metalnoj površini krakova antene. U ovom slučaju tangencijalne komponente na površini krakova antene imaju E_{φ} i E_r komponentu električnog polja . Granični uslovi za gornji i donji krak antene dati su sledećim izrazima:

$$E_{\varphi_t} + E_{r_t} = E_i \quad za \quad 0 \le r \le b$$

$$E_{\varphi_t} + E_{r_t} = 0 \quad za \quad r \ge b$$
gornjikrak (3.a)

$$E_{\varphi_{t}} + E_{r_{t}} = -E_{i} \quad za \quad 0 \le r' \le b$$

$$E_{\varphi_{t}} + E_{r_{t}} = 0 \quad za \quad r' \ge b$$

$$donjikrak \qquad (3.b)$$

gdje su:

$$E_{\varphi_{t}} = E_{\varphi} \cos \alpha \\ E_{rt} = E_{r} \sin \alpha$$
 gornji krak,
$$E_{rt} = E_{r} \sin \alpha$$
 donji krak
$$E_{rt} = E_{r} \sin \alpha$$

Ugao koji zaklapa tangenta u svakoj tački krive sa komponentama polja je:

$$\alpha = arctg \frac{dr}{rd\varphi}$$
, $\alpha' = arctg \frac{dr}{r'd\phi}$

Stavljajući u granični uslov (3.a,b) izraz za komponente električnog polja (2.a), granični uslov se može pisati u sledećem obliku: za gornji krak

$$\sum_{n=1}^{N} \sum_{m=0}^{n} \left(C_{nm} f_{nm}^{(1)} \left(r, \frac{\pi}{2}, \varphi \right) + D_{nm} f_{nm}^{(2)} \left(r, \frac{\pi}{2}, \varphi \right) \right) = \begin{cases} E_i & za \quad 0 \le r \le b \\ 0 & za \quad r \ge b \end{cases}$$

(4.a) gdje su bazne funkcije:

$$\begin{aligned} f_{nm}^{(1)}\left(r,\frac{\pi}{2},\varphi\right) &= \left(\frac{n(n+1)}{yr^2}B_n(kr)\sin\alpha + \frac{jm}{yr}\frac{\partial B_n(kr)}{\partial r}\cos\alpha\right)P_n^m(\cos\theta)e^{jm\varphi}\\ f_{nm}^{(2)}\left(r,\frac{\pi}{2},\varphi\right) &= \frac{B_n(kr)}{r}\frac{\partial P_n^m(\cos\theta)}{\partial \theta}\bigg|_{\theta=\frac{\pi}{2}}\cos\alpha \ e^{jm\varphi} \end{aligned}$$

za donji krak

$$\sum_{n=1}^{N} \sum_{m=0}^{n} \left(C_{nm} f'_{nm}^{(1)} \left(r', \frac{\pi}{2}, \phi \right) + D_{nm} f'_{nm}^{(2)} \left(r', \frac{\pi}{2}, \phi \right) \right) = \begin{cases} -E_i & za \quad 0 \le r' \le b \\ 0 & za \quad r' \ge b \end{cases}$$

(4.b) gdje su bazne funkcije:

$$f'_{nm}^{(1)}\left(r',\frac{\pi}{2},\phi\right) = \left(\frac{n(n+1)}{yr}B_n\left(kr'\right)\sin\alpha' + \frac{jm}{yr'}\frac{\partial B_n\left(kr'\right)}{\partial r'}\cos\alpha'\right)P_n^m(\cos\theta)e^{jm\phi}$$

$$f'_{nm}^{(2)}\left(r',\frac{\pi}{2},\phi\right) = \frac{B_n\left(kr'\right)}{r'}\frac{\partial P_n^m(\cos\theta)}{\partial \theta}\bigg|_{\theta=\frac{\pi}{2}}\cos\alpha' e^{jm\varphi}$$

Sisteme (4a,b) radi jednostavnosti ćemo tranformisati u sledeće izraze: *za gornji krak*

$$\sum_{n} \sum_{m} S_{nm} F_{nm} \left(r, \frac{\pi}{2}, \varphi \right) = \begin{cases} E_i & za \quad 0 \le r \le b \\ 0 & za \quad r \ge b \end{cases}$$
(5.a)

gdje su:

$$F_{nm}\left(r,\frac{\pi}{2},\varphi\right) = f_{n-N,m}^{(2)}\left(r,\frac{\pi}{2},\varphi\right)$$
$$za \quad n = N+1,\dots,2N \quad i \quad m = 0,\dots,n-N$$

za donji krak

$$\sum_{n \ m} \sum_{m \ m} S_{nm} F'_{nm} \left(r', \frac{\pi}{2}, \phi \right) = \begin{cases} -E_i & za \quad 0 \le r' \le b \\ 0 & za \quad r' \ge b \end{cases}$$
(5.b)

gdje su:

$$F'_{nm}\left(r', \frac{\pi}{2}, \phi\right) = f'_{nm}^{(1)}\left(r', \frac{\pi}{2}, \phi\right) \\ s_{nm} = C_{nm}$$
i

$$F'_{nm}\left(r',\frac{\pi}{2},\phi\right) = f'_{n-N,m}\left(r',\frac{\pi}{2},\phi\right) \\ S_{nm} = D_{n-N,m}$$
 $za \quad n = N+1,\dots,2N \quad i \quad m = 0,\dots,n-N$

Postupkom opisanim u prethodnim glavama i ovdje dobijamo sistem algebarskih jednačina po nepoznatim koeficijentima razvoja S_{nm} :

$$\sum_{n} \sum_{m} S_{nm} a_{nm,n'm'} = b_{n'm'}$$

gdje su:

$$a_{nm,n'm'} = \int F_{nm} F_{n'm'}^{*} dl + \int F_{nm} F_{n'm'}^{'} dl'$$

$$b_{n'm'} = E_i \left(\int_{0}^{b} F_{n'm'}^{*} dl - \int_{0}^{b} F_{n'm'}^{'} dl' \right)$$

Elementi dužine gornjeg i donjeg kraka su :

$$dl = \sqrt{\left(rd\varphi\right)^2 + dr^2} \quad i \quad dl' = \sqrt{\left(r'd\phi\right)^2 + dr'^2}$$

U oblasti koja obuhvata tačke $r \rightarrow 0$, gdje zadovoljavamo granični uslov $B_n(kr)$ su Besselove funkcije prve vrste. U udaljenim tačkama potencijal, odnosno komponente polja izražavamo preko Henkelovih funkcija, kako bi bili zadovoljeni uslovi zračenja u dalekoj zoni. Tako su sada potencijali polja dati izrazom:

$$A_{r} = \sum_{m n} \beta_{nm}^{(1)} H_{n}(kr) P_{n}^{m}(\cos\theta) e^{jm\varphi}$$

$$F_{r} = \sum_{m n} \beta_{nm}^{(2)} B_{n}(kr) P_{n}^{m}(\cos\theta) e^{jm\varphi}$$
(6)

(3.6)

gdje su $\beta_{nm}^{(1)}$, $\beta_{nm}^{(2)}$ nepoznati koeficijenti razvoja koje ćemo dobiti iz uslova jednakosti izraza (2) i (6) na sferi poluprečnika $R = \max(r)$:

$$\beta_{nm}^{(1)} = C_{nm} \frac{B_n(kR)}{H_n(kR)}$$

$$\beta_{nm}^{(2)} = D_{nm} \frac{B_n(kR)}{H_n(kR)}$$

$$(7)$$

U zoni zračenja $(r \to \infty)$ kada sve Henkelove funkcije postaju $j^{(n+1)}e^{-jkr}$, komponenta polja $E_r \to 0$, te postoje samo E_{φ} i E_{θ} komponente.

Karakteristična funkcija zračenja ima dvije komponente:

$$\hat{F}_{\varphi}(\theta,\varphi) = \left| \sum_{n=1}^{N} \sum_{m=0}^{n} j^{n+1} e^{jm\varphi} \left(\frac{km}{y\sin\theta} \beta_{nm}^{(1)} P_n^m(\cos\theta) + \beta_{nm}^{(2)} \frac{\partial P_n^m(\cos\theta)}{\partial \theta} \right) \right|$$
$$\hat{F}_{\theta}(\theta,\varphi) = \left| \sum_{n=1}^{N} \sum_{m=0}^{n} j^{n+1} e^{jm\varphi} \left(\frac{jk}{y} \beta_{nm}^{(1)} \frac{\partial P_n^m(\cos\theta)}{\partial \theta} - \frac{jm}{\sin\theta} \beta_{nm}^{(2)} P_n^m(\cos\theta) \right) \right|$$

3.NUMERIČKI REZULTATI

Opisanim numeričkim postupkom analizirane su antene oblika simetrične Arhimedove spirale. Na slici.2 dati su dijagrami zračenja simetrične Arhimedove spirale za pet različitih konstanti spirale.

Slika 2 Dijagrami zračenja simetrične Arhimedove spirale, lijeva kolona E_{φ} komponenta, desna kolona E_{θ} komponenta električnog polja.

U lijevoj koloni su dijagrami zračenja φ komponente električnog polja,a u desnoj koloni su dijagrami zračenja θ komponente električnog polja. Faze komponenti električnog polja E_{φ} i E_{θ} u pravcima $\theta = 0$ i $\theta = \pi$, gdje su im inteziteti zračenja jednaki, razlikuju se za $\pm \frac{\pi}{2}$, što znači da u tim pravcima imamo kružno polarizovan talas. U pravcu $\theta = \pm \frac{\pi}{2}$ imamo linijski polarizovan talas, a u ostalom prostoru eliptično polarizovan talas. Sve vrijednosti zračenja normalizovane su u odnosu na prvi slučaj, tj. za $\Delta = 0.25\lambda$ i dužinom kraka određenom uglom koji se mijenja u granicama od $0 \le \varphi \le 2\pi$. Sa slike 2. se uočava da funkcija zračenja φ komponente električnog polja ima skoro u svim slučajevima ravnije oblike sa malim, u nekim slučajevima čak zanemarljivim bočnim lepezama, što nije slučaj kod funkcije zračenja θ komponente električnog polja, gdje su bočne lepeze veoma izražene. Svi dijagrami zračenja su

U tabeli 3. data su maksimalna pojačanja slučajeva sa slike 2.

crtani u ravni $\varphi = 0^{O}$.

Tabela 3.	
$\Delta = 0.25\lambda$	4.05 dB
$\Delta = 0.5\lambda$	3.99dB
$\Delta = 0.75\lambda$	4.26dB
$\Delta = 1\lambda$	6.18dB
$\Delta = 1.25\lambda$	7.72dB

Iz tabele 3. vidimo da se pojačanje u svim analiziranim slučajevima pri nepromijenjenoj električnoj dužini kraka antene, kreće u granicama od 3.99 do 7.72 dB. Promjena konstante spirale donosi promjenu maksimalnog pojačanja u rasponu od oko ± 2 dB.

Na slici 3. dati su rezultati dobijeni opisanim postupkom, upoređeni sa rezultatima dobijenim teorijom izloženom u [1].

Slika 3. Uporedni grafik pojačanja

Sa datih dijagrama pojačanja simetrične i ekscentrične Arhimedove spirale tačno određene geometrije $(a = 0.00144m / rad, 90^{o} \le \varphi \le 1620^{o})$ uočava se veoma dobro slaganje rezultata u slučaju simetrične spirale.

U svim analiziranim slučajevima vrlo visoka tačnost prilikom zadovoljavanja graničnog uslova je postignuta već sa dvadeset članova u razvoju (2.). Na slici 4. data je greška koja se pravi prilikom zadovoljavanja graničnog uslova na gornjem i donjem kraku antene.

Slika 4. Greška koja se pravi pri zadovoljavanju graničnog uslova($\Delta = 1.25\lambda$, električna dužina kraka spirale određena uglom $0 \le \varphi \le 2\pi$)

4. ZAKLJUČAK

Demonstrirana je mogućnost upotrebe metoda najmanje kvadratne greške u analizi polja simetrične Arhimedove spirale. Dobijeni su dijagrami zračenja simetrične spirale za pet različitih konstanti spirale. Takođe, računato je maksimalno pojačanje u svim analiziranim slučajevima. Uočeno je, da sa povećanjem konstante spirale, pojačanje u pravcu maksimalnog zračenja raste. Dobijeni dijagrami pojačanja upoređeni su sa rezultatima iz [1]. Veoma dobro zadovoljenje graničnog uslova na svim djelovima antene postignuto je sa dvadeset članova razvoja.

Na osnovu izloženoga metod se pokazao vrlo tačnim i relativno jednostavnim za korišćenje, što ga preporučuje za analizu antena još složenijeg oblika.

LITERATURA

- [1] R.T.Gloutak, Jr. and N.G.Alexopoulos,"Two-Arm Eccentric Spiral Antenna", IEEE Trans. on Antennas and Propag.,vol.45, no.4, april 1997.
- [2] S.K.Khamas and G.G.Cook,"Moment-Method Analysis of Printed Wire Spirals Using Curved Piecewise Sinusoidal Subdomain Basis and Testing Functions",IEEE Trans. on Antennas and Propag.,vol.45, no.6, jun 1997.
- [3] H.Nakano, Y.Shinma and J.Yamauchi,"A Monofilar Spiral Antenna and Its Array Above a Ground Plane-Formation of a Circularly Polarized Tilted Fan Beam", IEEE Trans. on Antennas and Propag.,vol.45, no.10, october 1997.
- [4] O.M.Ramahi,"Near-and Far-Field Calculations in FDTD Simulations Using Kirchoff Surface Integral Representation", IEEE Trans. on Antennas and Propag.,vol.45, no.5, may 1997.
- [5] A.Shlivinski, E.Heyman and R.Kastner,"Antenna Characterization in the Time Domain", IEEE Trans. on Antennas and Propag., vol.45, no.7, july 1997.
- [6] O.M.Ramahi," The Complementary Operators Method in FDTD Simulations", IEEE Trans. on Antennas and Propag. magazine, vol.39, no. 6, december1997.
- [7] L.W.Li, M.S.Leong, P.S.Kooi and T.S.Yeo,"Exact Solutions of Electromagnetic Fields in Both Near and Far Zones Radiated by Thin Circular-Loop Antennas: A General Representation", IEEE Trans. on Antennas and Propag., vol.45, no.12, december 1997.

- [8] LJ.Stanković, S.Jovićević," Modified least squares method with application to diffraction and eigenvalue problems", IEEE Proceedings, vol.135, Pt.H, no.5, october 1988.
- [9] LJ.Stanković, S.Jovićević, "A round-ridge waveguide", Ann.Telecommun., 43, nº 9-10, 1988.
- [10] LJ.Stanković, S.Jovićević," Boundary Condition Expansion of Basis Functions Method Implemented by Fast Fourier Transform Algorithms", IEEE Trans. on Microwave Theory and Techniques, vol.38, no.3, march 1990.
- [11] A.Jovanović, S.Jovićević"A general Solution of the Thin Circular Loop Radiation", Electromagnetics, Vol. 23, no.1, january 2003.
- [12] S.Jovićević, A.Jovanović,"The analysis of the biconical antenna by the Least-Squares Boundary Residual Method", Int. J. Electron. Commun. (AEU) 57 (2003), no. 6, 415-419.
- [13] A.Jovanović, S.Jovićević,"Analiza žičanih antena metodom najmanjih kvadrata", XLII ETRAN sveska II, Vrnjačka Banja 1998.
- [14] R.F.Harrihgton, Time-Harmonic Electromagnetic Fields, Mc Graw-Hill Book Company, New York 1961.
- [15] L.W.Li, M.S.Leong, P.S.Kooi, T.S.Yeo,"Exact Solutions of Electromagnetic Fields in Both Near and Far Zones Radiated by Thin Circular-Loop Antennas: A General Representation", IEEE Trans. Antennas and Propag., vol. 45, no. 12, dec.1997.

Abstract: This paper demonstrates the applicability of the Least square boundary method (LSBM) in the symmetric Archimedean spiral antenna analysis. It appiered that the boundary condition is highly fulfiled by a small number of eigenfunctions, which makes the obtained results very reliable. The radiation field is found in far zone.

FIELD ANALYSIS OF THE SYMMETRIC ARCHIMEDEAN SPIRAL ANTENNA BY THE LEAST SQUARE BOUNDARY METHOD

Ana Jovanović, Svetozar Jovićević