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Abstract – In this paper, we consider extension of the 
ordinary dyadic wavelet transform, implemented by iteration 
of the two-band orthonormal rational filter banks on the 
lowpass branch, that provide a flexible orthogonal tiling of 
the time-frequency plane. We design the rational two-band 
orthonormal IIR filter banks starting from the fifth order 
halfband Butterworth filter bank and generate pertaining 
wavelet and scaling functions. We show the appropriate 
time-frequency plane tiling. The same graphs are depicted 
for the dyadic wavelet transform implemented by the 
iterations of the fifth order Butterworth filter bank. 

1. INTRODUCTION 

 In this paper, we consider an extension of the ordinary 
dyadic wavelet transform implemented by iteration of the 
two-band orthonormal rational filter banks on the lowpass 
branch [1] - [3] that provide a flexible orthogonal tiling of the 
time-frequency plane. The rational orthonormal IIR filter 
bank with cutoff frequency 0.5 /fc n= , n∈  is constructed 
from the QMF two-band IIR filter bank using algorithm 
proposed in [4] and [5]. 

 The choice of the proper tiling of the time-frequency 
plane may dramatically improve performance in several 
applications, such as audio coding, analysis, synthesis and 
denoising. By adapting the frequency bands to the signal, we 
can enhance energy compaction and improve the coding 
efficiency. Choosing arbitrary cutoff frequency an entire 
class of nonuniform filter banks can be derived. 

 Two-band rational FIR filter banks have been examined 
e.g. in [6] – [8], while the IIR orthonormal wavelet filter 
banks have been less studied in general [9], [10]. 

 In this paper, we design the rational two-band 
orthonormal IIR filter banks, using algorithm for construction 
of IIR complementary filter pairs with an adjustable 
crossover frequency given in [4] and [5], starting from the 
fifth order halfband Butterworth filter bank and generate 
pertaining wavelet and scaling functions. It the end, we show 
the appropriate time-frequency plane tilings. For the 
comparison, the same graphs are depicted for the dyadic 
wavelet transform implemented by the iterations of the initial 
fifth order Butterworth filter bank. 

2. TWO-BAND RATIONAL IIR FILTER BANKS 

An odd-order IIR filter pair H(z) can be implemented as a 
parallel connection of two all-pass branches A0(z) and A1(z):  

 0 1

0 1

( ) ( )( ) 1( )
( ) ( )( ) 2

LP

HP

A z A zH z
z

A z A zH z
+⎡ ⎤⎡ ⎤

= = ⋅ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
H .  (1)                    

where ( )zH LP  denotes low-pass and  ( )zH HP  high-pass 
filter. This filter pair called also two-channel filter bank, is 
power complementary and all-pass complementary [11].  

 For dividing the basis band in two equal sub-bands, the 
crossover frequency of the filter pair should be placed at the 
middle of the band, and both filters, ( )zH LP  and ( )zH HP , 
should be half-band filters satisfying the well-known 
symmetry conditions [11]. The crossover frequency of the 
filter pair is also the 3dB cut-off frequency for ( )zH LP  and 

( )zH HP , i.e., 0.25HB
cf = . 

The all-pass branches A0(z) and A1(z), are implemented as 
a cascade connection of the first-order and the second-order 
sections. In the case of a minimum phase half-band filter, all 
poles are placed on the imaginary axes and one of them is 
placed at the origin. Therefore, the transfer function of the 
half-band filter pair ( )HB zH  can be expressed as follows: 
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where HB
i
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i 1 +< ββ . Here the constant

2HB
i
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i r=β  denotes 

the square module of the half-band filter pole HB
ir . 

  When the crossover frequency of the filter pair is moved 
from the point 0.25HB

cf =  to some other position in the 
range 0 0.5cf< < , the transfer function of the transformed 

filter pair ( )HB zH  can be expressed [4], [5] in the form:
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Table 1 presents the formulae for computing the constants 
α  and iβ  of equation (3) using the constants HB

iβ of the 
start-up half-band filter from (2) and desired crossover 
frequency cf  as given in [4] and [5].  These formulae are 
applicable also  for odd-order Butterworth filters when 
implemented as a parallel connection of two all-pass 
branches 0 ( )A z  and  1( )A z , [12]. 

The 3-dB cutoff frequency of a single filter is equivalent to 
the 3-dB crossover frequency of a complementary filter pair.  
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TABLE I - COMPUTATION OF CONSTANTS 
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 According to this algorithm, we design two IIR filter 
banks whose crossover frequency are moved from 

0.25HB
cf =  to of the halfband pair to 0.5 / 3cf =  and 

0.5 / 4cf =  while still retaining the attenuation properties of 
the initial fifth order halfband Butterworth filters. Transfer 
functions and magnitude characteristics of the initial and the 
resulting filter pairs are depicted in figures 1 and 2 
respectively. 
 In orthonormal wavelet transform implementation using 
lowpass iteration of the halfband filter banks [13] – [15], the 
most desirable filter property is high regularity order which 
represents the numbers of zeros at half the sampling 
frequency of the lowpass filter of the analysis bank [16]. 
Also, the regularity order denotes the implemented wavelet 
transform capability of detecting signal discontinuities of the 
higher order [15], [17]. In figure 3, the zero-pole plots of the 
initial and the designed lowpass filters are shown. We notice 
that the applied procedure for changing the crossover 
frequency preservers the regularity order of the initial filter. 

The IIR filters with crossover frequencies 1
6cf =  and 

1
8cf =  have five zeros at 1z = −  as the initial halfband 

Butterworth filter. 
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Fig. 1. Transfer functions  
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Fig. 2. Magnitude characteristics 
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Fig. 3. Zero-pole positions of the lowpass filters 

3. WAVELET TRANSFORM IMPLEMENTATION  

 The lowpass branch iteration of the filter banks generates 
equivalent bandpass filters [16] of the form 
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− −
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Letting i →∞  gives the “mother wavelet”  ( )tψ : 
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where i
nψ  is the impulse response of ( )i zΨ . Impulse 

response i
nφ  of the equivalent lowpass filter of the form 
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is reffered as scaling function after i  iterations. 

 The fourth order iteration of the two-band filter banks 
realising orthonormal wavelet decomposition and synthesys 
are displayed in figures 4 and 5 respectively. If the input 
signal is the unit impulse, the highpass outputs of the analysis 
filter bank iteration and the corresponding inputs of the 
synthesis filter bank iteration, denoted with ,0iψ , represent 
the wavelet functions after i  iteration. In the same time, 4,0φ  
represents the scaling function after four iterations. 
Orthonormality property is attained by employing the 
anticausal versions of the wavelet decomposition filters in the 
synthesis part [18], [19], [13] - [15]. 
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Fig. 4. Filter bank implementation of the wavelet transform 
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Fig. 5. Filter bank implementation of the inverse wavelet 

transform 

 Implementation of the wavelet transform using rational 
two-band filter bank provides tiling of the time-frequency 
plane in accordance with the chosen cutoff filter pair 
frequency. Equivalent bandpass filters’ transfer functions i.e. 
wavelet spectra ,0iψ , 1, 2,3, 4i =  and the lowpass filters' 

i.e.scalinig functions' spectra 4,0φ , of the iterated analysis 
filter banks, as well as their time representations, are 
ilustrated in figures from 6 to 11. 
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Fig. 6. Wavelet and scaling functions spectra, 1
4cf =  
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Fig. 7. Wavelet and scaling functions, 1
4cf =  

 Figure 12 depicts the time frequency tiling for the 
examined dyadic and rational filter banks with cutoff 

frequency of 1
6cf =  and  1

8cf = . 
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Fig. 8. Wavelet and scaling functions spectra, 1
6cf =  
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Fig. 9. Wavelet and scaling functions, 1
6cf =  
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Fig. 10. Wavelet and scaling functions spectra, 1
8cf =  

4. CONCLUSION 

 In this paper, we have demonstrated the discrete-time 
orthonormal wavelets with nonoctave spaced frequency 
bands generated by iteration of the two-band orthonormal 
rational IIR filter banks derived from the fifth order halfband 
Butterworth filter banks. The most important property of the 
derived IIR rational filter banks is that they preserve the filter 
and regularity orders of the initial halfband IIR filter bank. 
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Fig. 11. Wavelet and scaling functions, 1
8cf =  
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Fig.12 The time-frequency plane tiling 
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