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Abstract – In this paper the Stochastic Inclusion Principle is 
applied to decentralized LQG suboptimal longitudinal control 
design of a platoon of automotive vehicles. Starting from a 
stochastic linearized platoon state model, input/state 
overlapping subsystems are defined and extracted after an 
adequate expansion. An algorithm for approximate LQG 
optimization of these subsystems is developed. Vehicle 
controllers obtained after contraction, provide high 
performance tracking and noise immunity. 
 
1. INTRODUCTION 

 
The problem of design of automated highway systems 

(AHS) has attracted a considerable attention among 
researchers, e.g. [2,8]. AHS control architecture proposed in 
[8,2,18] is based on the introduction of a notion of platoons, 
groups of vehicles following the leading vehicles with small 
intra-platoon separation. Control of platoons has been studied 
from different viewpoints [9,7,16]. However, tuning of the 
local  regulator parameters has been based on arguments related 
to relative stability, without taking into account uncertainties 
and possibilities to improve the performance by introducing 
dynamics into the regulator. In [13, 14] a systematic procedure 
for the design of decentralized overlapping platoon controller 
on the basis of  LQ optimization has been described.  
 

In this paper a generalization of the approach in [13, 14] to 
the stochastic case is presented. Namely, the Stochastic 
Inclusion Principle [11, 12] is applied to the design of 
decentralized LQG suboptimal longitudinal control of a platoon 
of vehicles, taking into account uncertainty resulting from the 
influence of the environment and measuring devices. The first 
part of the paper contains the results related to platoon 
modeling [8, 18, 2, 9, 14], taking into account stochastic 
disturbances and measurement noise. An optimization 
technique resembling to the methodology for deriving LQ 
suboptimal control for systems with the hierarchical LBT 
structure proposed in [6, 10, 14], is developed and presented. 
Contraction to the original space provides a decentralized 
controller for the whole platoon. Experimental results are given 
in order to illustrate main properties of the proposed 
methodology. 
 

2. MODEL FORMULATION 
 

It will be adopted in this paper that i-th automotive vehicle 
in a close formation platoon consisting of n vehicles can be 
represented by the following dynamic model: 
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where iii xxd −= −1  is the distance between two consecutive 

vehicles, 1−ix  and ix  represent their positions, iv , ia  and y&  

are the velocity, acceleration and jerk, respectively, (.)i
af  and 

(.)i
jf  are static nonlinearities of saturation type, iα   represents 

the inverse time-constant of the basic vehicle dynamics, ik1  and 
ik2  constants defining rolling resistance, iu  is the 

corresponding control input, while ie  represents the white 

random noise force input with variance e
ir , resulting from wind 

gusts and road roughness. Supposing for the sake of simplicity 
that n=3 and that all the vehicles have the same models, we 
obtain the model 
 

                

,
00

00
00

00
00
00

0
0
00

3

2

1

3

2

1

3

2

1

3

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

e
e
e

G
G

G

u
u
u

B
B

B

X
X
X

AA
AA

A

X
X
X

e

e

e

v

v

v

vd

vd

v

&

&

&

              (2) 

 

where [ ]iii
T
i avdX =   ( 00 =x  in 1d ) and 
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Permissible control strategies should essentially be 
decentralized, having in mind the supposed information 
structure [9], i.e. the local control  iu  is to be calculated on 
basis of the noise measurements of the local vehicle state 
variables { }iii avd , together with the noisy information 
about the velocity and acceleration of the preceding vehicle 
{ }11 −− ii av , which is assumed to be transmitted by appropriate 
communication channels. Each vehicle is also supplied with the 
information about the spacing, velocity and acceleration 
reference command{ }rrr avd . The theory of large scale 
systems abounds with methodologies for both decentralized 
design of complex control structures and decentralized design 
of completely decentralized control structures, e.g. [17, 13, 14]. 
One of elegant and powerful methodologies is based on the 
Stochastic Inclusion Principle [12, 11]. 
 
3.  DECENTRALIZED LQG SUBOPTIMAL PLATOON 

CONTROL 
 

Following the Stochastic Inclusion Principle, a 
decentralized LQG suboptimal control strategy will be 
developed by considering a platoon of vehicles as a 
concatenation of overlapping “subsystems”. The i-th 
subsystems is defined by the following state model (see [13, 
14] for the deterministic case) 
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and [ ]iiiii
T
i avdav 11 −−=ξ . According to (2), the overlapping 

part in the state matrix is, obviously, LA  with both the 
preceding and the following subsystems. The subsystems are 
not only state overlapping, but also input overlapping (they 
have one input in common), so that the input expansion is 
needed, as well. After expansion, the subsystems in the platoon 
model appear as disjoint. Application of the LQG methodology 
based on the definition of local performance indices leads to 
local state feedback control. Contraction to the original space 
provides a physically implementable control law. 
 
 

3.1 Leading Vehicle control 
 

If the leading vehicle model is represented by  
 

                      11 eGuBXAX LLLLL ++=&                          (4) 

where [ ]11 avX T
L = , then the optimal feedback control law 

using noisy measurements [ ]avT
L nanvY 1111 ++=  (where vn1  

and an1  are mutually independent white noise with variances 
vr1  and ar1 , respectively) should be found from the condition 

for the minimum of the performance index 
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where [ ]rr
T
r avX =1  is a  time-varying reference supplied to 

the first vehicle, known entirely in advance, and 0≥LQ  end 
0>LR  are corresponding weights. This is, in fact, an LQG 

optimal tracking problem, which can be solved in the following 
way [1]: 
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where LX̂  is obtained by the locally optimal Kalman filter 
obtained from (4).  
 
 

3.2 General Subsystem Control 
 

Control of the second vehicle assumes that the leading 
vehicle control is appropriately designed. Control design can be 
decomposed into two parts: first, 1−iu  is found and the 
corresponding regulator is implemented and, second, iu  is 
found for the resulting system by using the complete feedback 
starting from the noisy state measurements. Accordingly, we 
have 
 

                [ ] .ˆˆ 111111 r
T

iii XMavKu −−= −−−                     (7) 
 

After implementing (7), one comes to the following 
subsystem model 
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where 1−iε  is the estimation error for [ ]Tii av 11 ˆˆ −−  obtained by 
Kalman filter belonging to leading vehicle control law. Now, 

iu  is found by minimizing                    
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where 0≥iQ  and 0>iR , while ][2 rrr
T
r avdX =  is complete set 

of reference commands. The state weighting matrix is assumed 
to have the following specific form, coming out basically from 
the regulator structure adopted in [9]:  
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In (10), 33q  influences the spacing reference tracking, 1p  

and 2p  tracking of the velocity and acceleration of the 
preceding vehicle, respectively, while 44q  and 55q  influence 
velocity and acceleration reference tracking. An approximately 
optimal solution, in the sense that all the gains are assumed to 
be constant, is given by 
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iX̂  represent the estimate of the subsystem state obtained 
by using the corresponding Kalman filter, taking into account 
specific properties of the input disturbance Consequently, 2M  
represent the feedforward gain for the complete reference rX 2 , 
while 3M  compensates the effects of the disturbance.  
 

The state feedback gain ][ 21
TTT

i KKK =  has the LBT 
structure, in accordance with the information supposed to be 
locally available.  

 
3.3 Platoon Control 
 

Local regulators formulated for the subsystems are to be 
contracted to the original space before implementation. The 
feedforward gains multiplying the reference signals are not 
contracted in accordance with the Inclusion Principle, since 
they are out of the feedback loop. The estimator gains are not 
contracted, as well, having in mind that all the local subsystem 
estimators remain uncontracted in the original system state 
space. The main additional requirement is here to keep the 
steady-state error at zero. It can be easily shown that the 
structure of 2M  and 3M  in (23) is such that the predefined 
information structure is preserved and a correct steady-state 
regime is preserved. 
 
4. EXPERIMENTAL RESULTS 
 

Numerous simulations have been undertaken; the platoon 
has been assumed to obey the nonlinear model and control has 
been generated according to the described algorithm. Figures 1 
and 2 give time histories for a platoon of eight vehicles, 
containing velocities and inter–vehicle spacings; the first 
velocity and spacing plots correspond to a direct application of 
LQ feedback (not containing the estimators, [14]), while the 
second plots are obtained by using the whole proposed LQG 
suboptimal algorithm, including the local Kalman filters. The 
remaining design parameters have been { }10,200diagQL = , 

10=LR , 1001 =p , 502 =p , 50033 =q , 30044 =q  1055 =q , 
10=iR , so that we obtained the following feedback  and  

feedforward gains: 
]710.0472.4[1 =K ,     [ ]291.1728.6071.7258.1061.42 −−−=K ,  

721.4431
1 =M , 672..2651

2 =M , 711.7051
3 −=M  , (for 10=α ). 

Tracking capabilities and noise immunity of the proposed 
algorithm are obvious. Comparison with the results presented 
in [9] shows a substantial advantage of the proposed. The 
authors are grateful to the staff of the PATH Program, 
University of Berkeley, for providing real experimental data. 
 
5. CONCLUSION   
 

In this paper the Stochastic  Inclusion Principle has been 
applied to LQG suboptimal control of a platoon of automotive 
vehicles. Identification of input/state overlapping stochastic 
subsystems and their extraction by an appropriate expansion 
have lead to approximate LQG optimization, adapted to the 
LBT structure of the subsystem model. Simulation results show 
a high efficiency of the proposed algorithm, from the point of 
view of both tracking precision and noise immunity. One of the 
main problems for further investigations is the tracking 
precision in the case of long platoons. 
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Fig. 1 Velocities:  (a)  LQ and (b) LQG 
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Fig. 2. Spacing: (a) LQ and (b) LQG 
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