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Abstract – This paper presents in a nutshell a procedure for 
producing formally verified concurrent software. The design 
paradigm provides means for translating block diagrammed 
models of systems from various problem domains in a 
graphical notation for process-oriented architectures. Briefly 
presented CASE tool allows code generation both for formal 
analysis of the models of software and code generation in a 
target implementation language. For formal analysis a high-
quality commercial formal checker is used. 

1. INTRODUCTION 

The term “software crisis” has been coined some thirty 
years ago by Dijkstra [1]. From that moment on, this crisis 
has never ceased [2] – it just has transformed as the abilities 
of computer hardware transformed, along with the 
expectations of the users. It is expected that electronic 
artificial intelligence gets embedded in virtually any domain 
of everyday physical activities. The emergent knowledge 
society is rooted in the ubiquitous proliferation of the 
computer-based surroundings. 

Pervasive computing, as this phenomenon is termed by 
IBM, stems from dramatic advancements in the micro- and 
nanoelectronics, according to the Moore’s law. In order to 
attain a full benefit of the revolutionary miniaturization and 
corresponding increase of computing power, the hardware 
progress has to be proportionally paced by the software 
technology. However, that is not the case: the demands for 
harnessing the available hardware power are not matched 
with the mastery of crafting adequate software solutions. The 
lost balance between the progress of hardware and software 
technology causes virtually all “hi-tech” projects to 
experience tremendous delays, breaking budgets and 
unreliability – symptoms of the software crisis. Under the 
market pressure, the picture worsens taking into account 
premature forcing total computerization of many safety-
critical systems. 

A paradigm shift in the software production is what both 
academic and industrial research tries to attain, since curbing 
the hunger for computation power is less likely to happen. 
Projections in the next 5 to 10 years further into the 
“information age” reveal high expectations of the technology. 
Ubiquitous networked computing nodes, also named 
“electronic dust” are shaping everyday environments into so-
called smart surroundings, lending themselves for the 

infrastructure of “ambient intelligence”. Smart surroundings 
are characterized by high topological reconfigurability, 
(wireless) ad-hoc networking, concurrency and 
customization. 

These are the requirements posed to the information 
technology. But what is the sought paradigm shift in software 
engineering that may empower these gigantic-scale 
intelligent systems? 

First of all, it should be observed that the state-of-the-art 
level of the software production is hardly to be termed 
“engineering”, but the development at best, if not 
craftsmanship or art in many cases. In order to admit a 
creative discipline to an engineering, it has to have certain 
properties, as formally rigorous design, quantified quality 
assessment and predictability. The metrics of the software 
production are not widely established, quality of the software 
is not predictable at the design time and is mainly guaranteed 
by testing – but as Dijkstra famously observed, “program 
testing can be a very effective way to show the presence of 
bugs, but is hopelessly inadequate for showing their 
absence”. In short, mathematical (formal) reasoning in the 
software development process is missing, quite opposite to 
recognized engineering disciplines, as civil engineering, 
avionics, control or mechanical design. 

The fight against (the symptoms of) the software crisis 
(productivity and quality) has yielded numerous software 
development methodologies and tools, called CASE – 
Computer Aided Software Engineering – tools (represented 
as a group in the middle of Figure 1). They deal with 
modelling software application domains into software 
architectures expected to provide satisfactory computer 
programs. Often the application domains have their own 
CAD – Computer Aided Design – tools, which help 
engineering (physical or information) systems whose some 
parts are implemented in software. 

 

 
 

Figure 1 Tool chain 
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Particularly interesting for integration with the CASE 
tools are those CAD’s able to produce source code for 
software-implemented components. Good examples are Ma-
tlab/Simulink and 20-sim for control applications (Figure 1). 

However, using a CASE tool in software development 
process does not imply its formal underpinning. Moreover, 
predominantly used methodologies and tools in the software 
industry have no formal (mathematically rigour) background 
– as for instance the mainstream object-oriented UML 
paradigm. However, the research in formal methods for 
software engineering has not been less active (nor diverse) as 
inventing software development paradigms and tools. It 
resulted in numerous formal theories and notations and led to 
development of various formal checkers for behavioural 
analysis of descriptions in those notations. It is surprisingly 
disappointing that these two worlds have been existing in 
isolation, with just a few exceptions (as B-method and 
UPPAAL). 

In the following two sections a background of the 
indicated tool chain in Figure 1 is clarified. Section 4 
presents a example of practical significance. The contribution 
of the reported work is summarized in Section 5. 

2. CSP/CT 

CSP (Communicating Sequential Processes) [3] are one 
of four major concepts pertaining to a formal basis of 
concurrent programming. The three other concepts are: CCS 
(Calculus of Communicating Systems), Petri Nets and 
various algebraic models of parallel processes, with proof 
systems based on classical mathematical logic, and its 
extensions, eg. temporal logic and modal logic. Out of all 
four, CSP is the closest to parallel programming languages 
[4]. The concepts of CSP model of concurrency are regarded 
as one of the key influential contributions in computer 
science, while the book [3] is the third most-cited computer 
science reference. On the practical side, Ada synchronous 
concurrency model is CSP-based, while revolutionary 
transputer has been programmed by pure CSP 
implementation language occam. After transputer 
disappearance in mid 1990’s, a few universities took on 
initiative to provide occam-like approach to programming 
concurrency in the form of libraries for mainstream 
languages. Compared to the other formal theories, the CSP 
has a substantial advantage in availability of powerful tools 
for model checking, among which is one of the most 
advanced commercial formal checker FDR [5], proven useful 
in verifying design of utterly complex embedded systems [6].  

Control Laboratory at the University of Twente has a rich 
experience in implementing  advanced  robotic control strate- 

 
datatype theType = some_val | another_val 
 
channel ch1 : theType 
channel ch2 : theType 
 
Producer12 = ch1!some_val -> ch2!another_val -> 
Producer12 
 
Consumer12 = ch1?aVar -> ch2?bVar -> Consumer12 
 
Consumer21 = ch2?bVar -> ch1?aVar -> Consumer21 
 
SystemDC = Producer12 [|{| ch1, ch2 |}|] Consumer21 
 
SystemDF = Producer12 [|{| ch1, ch2 |}|] Consumer12 

gies on transputer platforms. Within this group one of the 
most successful practical CSP-based set of libraries for Java, 
C and C++ called Communicating Threads (CT libraries) is 
developed and maintained [7, 8]. 

Recent developments are a graphical language for 
designing CSP-based process-oriented architectures [8] and a 
CASE tool (called gCSP) for creating, analysis and code 
generation of graphical models for CSP-based concurrent 
software [9]. 

3. CSPm, gCSP AND 20-SIM 

This paper focuses on an automated trajectory of 
producing formally verified CSP-based concurrent software 
implemented by CT libraries. The trajectory comprises 
modelling of process-oriented architectures by CSP diagrams 
[8] in the gCSP tool [9], transformation of the graphical 
models into formal description scripts and automatic 
generation of the CT code. Actually, the graphical models are 
transformed also by the code generation means into formal 
description language readable by the model checker FDR, 
called machine-readable CSP (CSPm). 

Since the research is carried out in the Control 
Engineering group, the pilot application domain are 
concurrent implementations of embedded control software 
systems. The design of control laws and strategies is 
accomplished by 20-sim, a powerful CAD tool for modelling 
and simulation of dynamic models, with special and 
comprehensive provisions for designing control laws. 

 

 
(a) 

 
(b) 

 
Figure 2 Deadlock condition and deadlock freedom 
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Especially interesting is the feature of 20-sim to 
automatically generate C code for complex dynamical 
models. This feature together with the gCSP’s capability to 
automatically generate concurrent frameworks for 
(sequential) control code components additionally 
contributes to the reliability of the control software as a 
whole. 

For illustrating the formal verification part of the whole 
design trajectory, detection of the most infamous problem in 
concurrent programming – deadlock – is used. For this a 
limited scope of the graphical language presented in Figure 2 
suffices. For detailed information see [9]. The framed listing 
shows a corresponding example of CSPm script. 

Communication patterns of processes Producer12, 
Concumer12 and Consumer21 (rectangles) are described by 
refining their internals with primitive (circled) writer 
processes for outputting data (CSP “!” operator) to 
synchronous channels (ch1 and ch2 in these examples) and 
inputting data from the channels (CSP “?” operator). Circled 
µ primitive processes describe repetitive execution of the 
processes (i.e. their internal compositions) – in these 
examples the repetitions are endless, which is indicated with 
the true iteration condition. Repetitive execution of a 
process or a composition of process is in the graphical 
language model by connected the subject of repetition with a 
µ primitive processes by a sequential relationship (while 
channels are arrowed lines, compositional relationships are 
also represented by lines, accompanied with a CSP operator 
symbol aside, which is an arrow for sequential composition). 
The bubble indexed with 1 denotes that the sequences of 
primitive writers/readers are repeated as a group. Likewise, 
bubbles on the parallel composition relationships (denoted by 
“||”) place the entire internals of the top-level processes in 
parallel compositions. 

In the script the type of specified channels (ch1 and ch2) 
consists of two constant values (some_val and 
another_val respectively). In the script these two constants 

represent any value that may be contained by the variables 
some and another (see graphical representation of 
Producer12 on Figures 2a) and 2b)). Producer12 is 
defined by the following communication pattern: first value 
of the variable some is output to the channel ch1, and then 
value of the variable another is output to the channel ch2. 
This sequence of channel activations is diagrammed in 
Figures 2a) and 2b) by the sequential relationships. Similarly, 
sequences that describe how processes Consumer12 and 
Consumer21 communicate with their environment are 
consistently described in the CSPm script and the diagrams. 
The specification of the producer process combined with the 
consumer processes with the two different communication 
patterns (with respect to the order of channel activations) 
describes two different systems (processes), SystemDC and 
SystemDF. Figures 2a) and 2b) correspond to these to 
systems respectively. In the graphical representation  of the 
coupling of Producer12 and Consumer21 one may notice a 
cycle -  a closed path uniformly oriented by the direction of 
sequential relationships and synchronous channels 
(orientation of the channels does not matter). Analysis of the 
script by FDR indicates deadlock freedom of all processes 
except the process SystemDC, which suffers from the 
deadlock condition. The reason is simple: communication 
patterns of Producer12 and Consumer12 are compatible, 
while those of Producer12 and Consumer21 are not. 

While Producer 12 tries first to output some_val on the 
channel ch1 and then another_val to the channel ch2, 
Consumer21 attempts reading from the channels in exactly 
opposite order (note the direction the upper sequential 
relationships). Therefore, on the attempted rendezvous 
synchronization processes wait on each other forever. A 
typical deadlock situation. 

4. A PRACTICAL EXAMPLE 

To illustrate a bit more realistic (and useful) context of 

 
 

Figure 3 20-sim closed loop model Figure 4 gCSP closed loop model 
 

 
Figure 5 Model at a lower hierarchy level
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using the outlined design trajectory, a block diagram of an 
basic closed loop system modelled in 20-sim is considered 
(Figure 3). Loop controller (LoopCon) on basis of the 
setpoint reference from a sequence controller (SeqCon) and 
feedback signal from a controlled object (PlantDyn) 
manages the steering values to the controlled object (plant). 
Translation to the CSP diagram in Figure 4 keeps the original 
topology by mapping functional blocks of 20-sim into gCSP 
processes and signals into channels. 

Usually only controlling part of a 20-sim design gets 
implemented on the target platform; for the Hardware-in-the-
Loop simulations, controlled object dynamics is taken from a 
control loop model and implemented. For the sake of clarity, 
in this example it is assumed that the complete dynamical 
model is refined towards implementation in order to verify 
soundness of the refinement concept. Internals of the 
processes from Figure 4 are present in Figure 5. Primitive 
readers and writers model inputting and outputting data 
in/from the processes. Data are manipulated by the 
algorithms represented by rounded rectangles (primitive code 
blocks). The µ processes denote repetitive nature of the data 
processing encapsulated by processes. 

Execution order of the primitive processes is modelled by 
the sequential relationships. The top-level processes are 
however composed in parallel. The compositions of 
processes in Figure 5 reflect an intuitive arrangement: all data 
are first inputted in each sampling period, processed by the 
code blocks, and than outputted. This represents a straight 
forward mapping from the 20-sim structure. One should 
always keep in mind that the sophisticated 20-sim simulation 
engine treats a dynamic model as one (complex) set of 
equations. Possible causality conflicts (as algebraic loops) are 
solved by resorting the order of calculations by the 
simulation engine automatically. When this assumption is 
neglected, and the model is decomposed into elemental parts, 
the resulting composition may exhibit problems that were not 
seen during dynamical simulation in the CAD tool. 
Consequently, the parallel composition presented in this 
example suffers from a deadlock! Similarly to Figure 2a), a 
cycle of sequential relationships is present here as well. For 
the example in hand, formal verification in FDR that should 
precede program implementation and testing, would reveal 
the deadlock at the top compositional level, although all 
constitutive processes are deadlock-free. 

There are many ways to resolve deadlock conditions. Due 
to the space limitation, the most simple, drawing from the 
elemental examples in Figure 2, will be applied in this 
situation. Although not applicable in most practical 
situations, due to this example simplicity, a simple 
reorganization in the order of activating operation in 
PlantDynProcess solves the problem. Namely, deadlock 
elimination amounts to breaking uniform orientation in the 
closed path in the model. That can be done by outputting the 
state of the dynamical plant prior inputting a new steering 
value. Simply, sequential relationship between the code 
block PlantDyn and primitive writer WRITER_x should be 
removed, and a new one connecting WRITER_x and 
READER_u established. Correctens of this solution (for this 
particular example) and elaboration of other solutions can be 
found in [9]. After CSPm code generation, FDR model 
checker verifies the deadlock freedom of the model. The 

model can be code generated in the CT library and 
successfully executed. 

5. CONCLUSIONS 

 The paper presents principles of an automated trajectory 
for implementing formally verified software, continuing a 
long-term research in supporting structured development of 
embedded control systems [7, 10]. Therefore it starts with 
dynamical modelling of controlled object and control laws 
development. The concurrent software architecture inherits 
the topology of the original problem configuration. After 
software architecture refinement, its deadlock freedom is 
verified. Verified design can be then automatically translated 
to the operational code. 

 To our knowledge, this is the first tool for visualizing 
CSP-based designs. Moreover, the described method of using 
one model for both formal verification and automatic code 
generation is one of just few known to date.  

 The principles of formal verification were demonstrated 
on the deadlock prevention. The FDR model checker allows 
also other useful analyses, as determinism and livelock-
freedom checks. The design refinement verifications 
(checking an implementation versus a system specification) 
would require an extension to the CSPm generator of the 
gCSP tools. Experimenting with these formal checks would 
be the first steps in further methodology improvements. 
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