

A CSP-BASED TRAJECTORY FOR DESIGNING
FORMALLY VERIFIED EMBEDDED CONTROL SOFTWARE*)

Dusko S. Jovanovic, Geert K. Liet, Jan F. Broenink

Twente Embedded Systems Initiative, Drebbel Institute for Mechatronics,
dept. of Control Engineering, Univerisity of Twente
P.O.Box 217, 7500AE Enschede, the Netherlands
Phone: +31 53 489 2788 Fax: +31 53 489 2223

e-mail: d.jovanovic@utwente.nl

Abstract – This paper presents in a nutshell a procedure for
producing formally verified concurrent software. The design
paradigm provides means for translating block diagrammed
models of systems from various problem domains in a
graphical notation for process-oriented architectures. Briefly
presented CASE tool allows code generation both for formal
analysis of the models of software and code generation in a
target implementation language. For formal analysis a high-
quality commercial formal checker is used.

1. INTRODUCTION

The term “software crisis” has been coined some thirty
years ago by Dijkstra [1]. From that moment on, this crisis
has never ceased [2] – it just has transformed as the abilities
of computer hardware transformed, along with the
expectations of the users. It is expected that electronic
artificial intelligence gets embedded in virtually any domain
of everyday physical activities. The emergent knowledge
society is rooted in the ubiquitous proliferation of the
computer-based surroundings.

Pervasive computing, as this phenomenon is termed by
IBM, stems from dramatic advancements in the micro- and
nanoelectronics, according to the Moore’s law. In order to
attain a full benefit of the revolutionary miniaturization and
corresponding increase of computing power, the hardware
progress has to be proportionally paced by the software
technology. However, that is not the case: the demands for
harnessing the available hardware power are not matched
with the mastery of crafting adequate software solutions. The
lost balance between the progress of hardware and software
technology causes virtually all “hi-tech” projects to
experience tremendous delays, breaking budgets and
unreliability – symptoms of the software crisis. Under the
market pressure, the picture worsens taking into account
premature forcing total computerization of many safety-
critical systems.

A paradigm shift in the software production is what both
academic and industrial research tries to attain, since curbing
the hunger for computation power is less likely to happen.
Projections in the next 5 to 10 years further into the
“information age” reveal high expectations of the technology.
Ubiquitous networked computing nodes, also named
“electronic dust” are shaping everyday environments into so-
called smart surroundings, lending themselves for the

infrastructure of “ambient intelligence”. Smart surroundings
are characterized by high topological reconfigurability,
(wireless) ad-hoc networking, concurrency and
customization.

These are the requirements posed to the information
technology. But what is the sought paradigm shift in software
engineering that may empower these gigantic-scale
intelligent systems?

First of all, it should be observed that the state-of-the-art
level of the software production is hardly to be termed
“engineering”, but the development at best, if not
craftsmanship or art in many cases. In order to admit a
creative discipline to an engineering, it has to have certain
properties, as formally rigorous design, quantified quality
assessment and predictability. The metrics of the software
production are not widely established, quality of the software
is not predictable at the design time and is mainly guaranteed
by testing – but as Dijkstra famously observed, “program
testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their
absence”. In short, mathematical (formal) reasoning in the
software development process is missing, quite opposite to
recognized engineering disciplines, as civil engineering,
avionics, control or mechanical design.

The fight against (the symptoms of) the software crisis
(productivity and quality) has yielded numerous software
development methodologies and tools, called CASE –
Computer Aided Software Engineering – tools (represented
as a group in the middle of Figure 1). They deal with
modelling software application domains into software
architectures expected to provide satisfactory computer
programs. Often the application domains have their own
CAD – Computer Aided Design – tools, which help
engineering (physical or information) systems whose some
parts are implemented in software.

Figure 1 Tool chain

*) This research is supported by PROGRESS, the embedded system research
program of the Dutch organization for Scientific Research, NWO, the Dutch
Ministry of Economic Affairs an the Technology Foundation STW.

 Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom I
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. I

285

Particularly interesting for integration with the CASE
tools are those CAD’s able to produce source code for
software-implemented components. Good examples are Ma-
tlab/Simulink and 20-sim for control applications (Figure 1).

However, using a CASE tool in software development
process does not imply its formal underpinning. Moreover,
predominantly used methodologies and tools in the software
industry have no formal (mathematically rigour) background
– as for instance the mainstream object-oriented UML
paradigm. However, the research in formal methods for
software engineering has not been less active (nor diverse) as
inventing software development paradigms and tools. It
resulted in numerous formal theories and notations and led to
development of various formal checkers for behavioural
analysis of descriptions in those notations. It is surprisingly
disappointing that these two worlds have been existing in
isolation, with just a few exceptions (as B-method and
UPPAAL).

In the following two sections a background of the
indicated tool chain in Figure 1 is clarified. Section 4
presents a example of practical significance. The contribution
of the reported work is summarized in Section 5.

2. CSP/CT

CSP (Communicating Sequential Processes) [3] are one
of four major concepts pertaining to a formal basis of
concurrent programming. The three other concepts are: CCS
(Calculus of Communicating Systems), Petri Nets and
various algebraic models of parallel processes, with proof
systems based on classical mathematical logic, and its
extensions, eg. temporal logic and modal logic. Out of all
four, CSP is the closest to parallel programming languages
[4]. The concepts of CSP model of concurrency are regarded
as one of the key influential contributions in computer
science, while the book [3] is the third most-cited computer
science reference. On the practical side, Ada synchronous
concurrency model is CSP-based, while revolutionary
transputer has been programmed by pure CSP
implementation language occam. After transputer
disappearance in mid 1990’s, a few universities took on
initiative to provide occam-like approach to programming
concurrency in the form of libraries for mainstream
languages. Compared to the other formal theories, the CSP
has a substantial advantage in availability of powerful tools
for model checking, among which is one of the most
advanced commercial formal checker FDR [5], proven useful
in verifying design of utterly complex embedded systems [6].

Control Laboratory at the University of Twente has a rich
experience in implementing advanced robotic control strate-

datatype theType = some_val | another_val

channel ch1 : theType
channel ch2 : theType

Producer12 = ch1!some_val -> ch2!another_val ->
Producer12

Consumer12 = ch1?aVar -> ch2?bVar -> Consumer12

Consumer21 = ch2?bVar -> ch1?aVar -> Consumer21

SystemDC = Producer12 [|{| ch1, ch2 |}|] Consumer21

SystemDF = Producer12 [|{| ch1, ch2 |}|] Consumer12

gies on transputer platforms. Within this group one of the
most successful practical CSP-based set of libraries for Java,
C and C++ called Communicating Threads (CT libraries) is
developed and maintained [7, 8].

Recent developments are a graphical language for
designing CSP-based process-oriented architectures [8] and a
CASE tool (called gCSP) for creating, analysis and code
generation of graphical models for CSP-based concurrent
software [9].

3. CSPm, gCSP AND 20-SIM

This paper focuses on an automated trajectory of
producing formally verified CSP-based concurrent software
implemented by CT libraries. The trajectory comprises
modelling of process-oriented architectures by CSP diagrams
[8] in the gCSP tool [9], transformation of the graphical
models into formal description scripts and automatic
generation of the CT code. Actually, the graphical models are
transformed also by the code generation means into formal
description language readable by the model checker FDR,
called machine-readable CSP (CSPm).

Since the research is carried out in the Control
Engineering group, the pilot application domain are
concurrent implementations of embedded control software
systems. The design of control laws and strategies is
accomplished by 20-sim, a powerful CAD tool for modelling
and simulation of dynamic models, with special and
comprehensive provisions for designing control laws.

(a)

(b)

Figure 2 Deadlock condition and deadlock freedom

286

Especially interesting is the feature of 20-sim to
automatically generate C code for complex dynamical
models. This feature together with the gCSP’s capability to
automatically generate concurrent frameworks for
(sequential) control code components additionally
contributes to the reliability of the control software as a
whole.

For illustrating the formal verification part of the whole
design trajectory, detection of the most infamous problem in
concurrent programming – deadlock – is used. For this a
limited scope of the graphical language presented in Figure 2
suffices. For detailed information see [9]. The framed listing
shows a corresponding example of CSPm script.

Communication patterns of processes Producer12,
Concumer12 and Consumer21 (rectangles) are described by
refining their internals with primitive (circled) writer
processes for outputting data (CSP “!” operator) to
synchronous channels (ch1 and ch2 in these examples) and
inputting data from the channels (CSP “?” operator). Circled
µ primitive processes describe repetitive execution of the
processes (i.e. their internal compositions) – in these
examples the repetitions are endless, which is indicated with
the true iteration condition. Repetitive execution of a
process or a composition of process is in the graphical
language model by connected the subject of repetition with a
µ primitive processes by a sequential relationship (while
channels are arrowed lines, compositional relationships are
also represented by lines, accompanied with a CSP operator
symbol aside, which is an arrow for sequential composition).
The bubble indexed with 1 denotes that the sequences of
primitive writers/readers are repeated as a group. Likewise,
bubbles on the parallel composition relationships (denoted by
“||”) place the entire internals of the top-level processes in
parallel compositions.

In the script the type of specified channels (ch1 and ch2)
consists of two constant values (some_val and
another_val respectively). In the script these two constants

represent any value that may be contained by the variables
some and another (see graphical representation of
Producer12 on Figures 2a) and 2b)). Producer12 is
defined by the following communication pattern: first value
of the variable some is output to the channel ch1, and then
value of the variable another is output to the channel ch2.
This sequence of channel activations is diagrammed in
Figures 2a) and 2b) by the sequential relationships. Similarly,
sequences that describe how processes Consumer12 and
Consumer21 communicate with their environment are
consistently described in the CSPm script and the diagrams.
The specification of the producer process combined with the
consumer processes with the two different communication
patterns (with respect to the order of channel activations)
describes two different systems (processes), SystemDC and
SystemDF. Figures 2a) and 2b) correspond to these to
systems respectively. In the graphical representation of the
coupling of Producer12 and Consumer21 one may notice a
cycle - a closed path uniformly oriented by the direction of
sequential relationships and synchronous channels
(orientation of the channels does not matter). Analysis of the
script by FDR indicates deadlock freedom of all processes
except the process SystemDC, which suffers from the
deadlock condition. The reason is simple: communication
patterns of Producer12 and Consumer12 are compatible,
while those of Producer12 and Consumer21 are not.

While Producer 12 tries first to output some_val on the
channel ch1 and then another_val to the channel ch2,
Consumer21 attempts reading from the channels in exactly
opposite order (note the direction the upper sequential
relationships). Therefore, on the attempted rendezvous
synchronization processes wait on each other forever. A
typical deadlock situation.

4. A PRACTICAL EXAMPLE

To illustrate a bit more realistic (and useful) context of

Figure 3 20-sim closed loop model Figure 4 gCSP closed loop model

Figure 5 Model at a lower hierarchy level

287

using the outlined design trajectory, a block diagram of an
basic closed loop system modelled in 20-sim is considered
(Figure 3). Loop controller (LoopCon) on basis of the
setpoint reference from a sequence controller (SeqCon) and
feedback signal from a controlled object (PlantDyn)
manages the steering values to the controlled object (plant).
Translation to the CSP diagram in Figure 4 keeps the original
topology by mapping functional blocks of 20-sim into gCSP
processes and signals into channels.

Usually only controlling part of a 20-sim design gets
implemented on the target platform; for the Hardware-in-the-
Loop simulations, controlled object dynamics is taken from a
control loop model and implemented. For the sake of clarity,
in this example it is assumed that the complete dynamical
model is refined towards implementation in order to verify
soundness of the refinement concept. Internals of the
processes from Figure 4 are present in Figure 5. Primitive
readers and writers model inputting and outputting data
in/from the processes. Data are manipulated by the
algorithms represented by rounded rectangles (primitive code
blocks). The µ processes denote repetitive nature of the data
processing encapsulated by processes.

Execution order of the primitive processes is modelled by
the sequential relationships. The top-level processes are
however composed in parallel. The compositions of
processes in Figure 5 reflect an intuitive arrangement: all data
are first inputted in each sampling period, processed by the
code blocks, and than outputted. This represents a straight
forward mapping from the 20-sim structure. One should
always keep in mind that the sophisticated 20-sim simulation
engine treats a dynamic model as one (complex) set of
equations. Possible causality conflicts (as algebraic loops) are
solved by resorting the order of calculations by the
simulation engine automatically. When this assumption is
neglected, and the model is decomposed into elemental parts,
the resulting composition may exhibit problems that were not
seen during dynamical simulation in the CAD tool.
Consequently, the parallel composition presented in this
example suffers from a deadlock! Similarly to Figure 2a), a
cycle of sequential relationships is present here as well. For
the example in hand, formal verification in FDR that should
precede program implementation and testing, would reveal
the deadlock at the top compositional level, although all
constitutive processes are deadlock-free.

There are many ways to resolve deadlock conditions. Due
to the space limitation, the most simple, drawing from the
elemental examples in Figure 2, will be applied in this
situation. Although not applicable in most practical
situations, due to this example simplicity, a simple
reorganization in the order of activating operation in
PlantDynProcess solves the problem. Namely, deadlock
elimination amounts to breaking uniform orientation in the
closed path in the model. That can be done by outputting the
state of the dynamical plant prior inputting a new steering
value. Simply, sequential relationship between the code
block PlantDyn and primitive writer WRITER_x should be
removed, and a new one connecting WRITER_x and
READER_u established. Correctens of this solution (for this
particular example) and elaboration of other solutions can be
found in [9]. After CSPm code generation, FDR model
checker verifies the deadlock freedom of the model. The

model can be code generated in the CT library and
successfully executed.

5. CONCLUSIONS

 The paper presents principles of an automated trajectory
for implementing formally verified software, continuing a
long-term research in supporting structured development of
embedded control systems [7, 10]. Therefore it starts with
dynamical modelling of controlled object and control laws
development. The concurrent software architecture inherits
the topology of the original problem configuration. After
software architecture refinement, its deadlock freedom is
verified. Verified design can be then automatically translated
to the operational code.

 To our knowledge, this is the first tool for visualizing
CSP-based designs. Moreover, the described method of using
one model for both formal verification and automatic code
generation is one of just few known to date.

 The principles of formal verification were demonstrated
on the deadlock prevention. The FDR model checker allows
also other useful analyses, as determinism and livelock-
freedom checks. The design refinement verifications
(checking an implementation versus a system specification)
would require an extension to the CSPm generator of the
gCSP tools. Experimenting with these formal checks would
be the first steps in further methodology improvements.

 REFERENCES

[1] E. W. Dijkstra, “The Humble Programmer,” in
Communications of the ACM, vol. 15, 1972, pp. 859-
866.

[2] [W. W. Gibbs, “Software's Chronic Crisis,” Scientific
American, 1994.

[3] C. A. R. Hoare, Communicating Sequential
Processes: Prentice Hall, 1985.

[4] J. Olszewski, “CSP laboratory,” ACM SIGCSE, vol.
25, pp. 91-95, 1993.

[5] FormalSystems, “FDR2 Refinement checker for CSP
models” http://www.fsel.com, 2004.

[6] G. H. Broadfoot and P. J. Hopcroft, “Combining the
Box Structure Development Method and CSP”, 19th
IEEE International Conference on Automated
Software Engineering. 2004.

[7] D. S. Jovanovic, G. H. Hilderink, and J. F. Broenink,
“A design environment for developing and testing
concurrent software for embedded control systems”,
XLVI Conference ETRAN. Banja Vrucica, Bosnia
and Herzegovina, 2002.

[8] G. H. Hilderink, Manging Complexity of Control
Software through Concurrency, University of
Twente, Netherlands, 2005.

[9] D. S. Jovanovic, Designing dependable process-
oriented software, a CSP approach, University of
Twente, Netherlands, 2005.

[10] D. Jovanovic, B. Orlic, and J. F. Broenink, “An
automated transformation trajectory from a model of
a controlling system to the control code”, XLVII
Conference ETRAN, XLVII Conference ETRAN.
Herceg Novi, Serbia and Montenegro, 2003.

288

