
 55

MISSION LEVEL DESIGN
OF COMPLEX AUTONOMOUS SYSTEMS

Volker Zerbe

Department of Automatic Control and System Engineering,
Technische Universität Ilmenau, Germany

e-mail: volker.zerbe@tu-ilmenau.de

Invited Paper

Abstract – In this paper the idea of Mission Level Design
(MLD) for complex autonomous systems, especially for
autonomous underwater vehicles is presented. Mission Level
Design can be thought of as system design on an abstract
level as well as an overall simulation in virtual worlds. It can
be used to test the design of complex systems. Missions
(generalized use cases) embed the system and describe user
requirements for the system design. This concept helps to find
problems in early design phases and offers developers a first
idea of system performance and characteristics.

MLDesigner (a design tool of the latest generation) is
used for the design of an autonomous underwater vehicle
(AUV). In this paper an overall system model with functional,
architectural and environmental aspects is presented. This
model is used to solve design questions through the
simulation of user defined missions in a virtual world. The
results of the simulation are shortly considered.

1 INTRODUCTION

Today more and more complex systems have to be
eveloped.The complexity of electronic systems is doubling
every 1.5years. We have now a complexity 100 times higher
then in 1990. At the same time the time-to-market
requirements are growing shorter, therefore the product life is
shrinking. The complexity of a mobile phone is comparable
to the complexity of a workstation build 15 years ago but
will have an essentially shorter product life. The increasing
complexity raises the probability of errors. 60 percent of all
ASIC designs fail. Independent specialists design modules
described by the system specification. If there is an error
within the specification it will be found during the testing
period of the system. But this probably causes iterations back
to the design phase, which are expensive. Therefore it would
be better to find this kind of errors in the early design phase.

Future systems will be so complex that an overall
simulation in its totallity is impossible. The solution is an
breakthrough in the design of complex embedded systems.
This shifts the center of development to early phases of the
design process. We call it the 4th generation of electronic-
design-automation tools: the system design on mission level.
Previous design concepts started to deal with more complex
systems by using levels of abstraction. The first steps were
hardware description languages and followed with those for
algorithms and systems. The system level was reached by
coupling different design tools. Examples are SES-
Workbench with Object-Geode [5] or Matrixx with
Statemate [6]. In spite of this, there is no general possibility

to simulate both hybrid reactive/transformatic behavioral and
architectural models in a common performance simulation
like an overall system simulation. What is the actual
situation? BoNES [4] and Cossap [1] are end-of-life,
Cadence still sells VCC. Since 2000, MLDesigner, a tool of
the 4th generation exists, figure 1. In this way, Mission Level
Design (MLD) is just another step to the consequent
formalization of the design process.

Figure 1: MLDesigner [9]: Mission level design approach

2 MISSION LEVEL DESIGN

What does system design on mission level mean? It stands
for design at the mission or operational level in order to
consider all dependencies early in the design. It is the
description of a mission in a virtual reality like an overall
system simulation for defined operational conditions.

Figure 2: System design on mission level

Zbornik radova XLVII Konf za ETRAN, Herceg Novi, 8-13 juna 2003, tom I
Proc. XLVII ETRAN Conference, Herceg Novi, June 8-13, 2003, Vol. I

 56

It offers a closed design- flow from mission level to silicon
and it allows the test of the design on mission level in a
virtual world as well. The shift of the design automation to
more abstract levels is based on a consequent formalization
on all levels. Therefore the implementation can be done
automatically, if the formalization starts early in the design
phase. An advantage is that the time-to-market decreases.
This results from the fact that in an early phase the design is
proven as free of faults and the requirements are fullfilled.
The breakthrough in the design of complex embedded
systems will be achieved because of the overall approach.
The overall system model consists of functional, architectural

and environmental components, which define different
aspects of the system in a virtual world. The properties of
those components are listed below:

• Functional models are the feasible parts of the
specification of the system or its components. They
describe the functional characteristics (continuous or
discrete systems, software), therefore the behaviour
of a system or component.

• Architectural models provide a description of the
available resources. They are used to examine the
performance characteristics of a system or
component. Normally, one functional model is
mapped on different architectural models to find the
best configuration.

• The environmental model, a set of mathematical
models, describes relevant parts of the surroundings.
Not yet implemented components may be integrated
into the environment, too.

Up to now, the system design process is top-down
oriented. Starting from the system level the draft is
subdivided and becomes refined multiple times until the
implementation. Now it is possible to design the system on
the system level only, as shown in Figure 2. The
implementation is affected by automation of the specified
components.

In chip production complex systems are designed based
on predefined and re-usable components, called Intellectual
Properties (IP). IP’s are part of huge libraries of different
application fields. They consist of functional and detailed
descriptions for the implementation. The system build with
IP’s is put on the silicon. Specification models of the
predefined components are integrated within the design
phase. This process is a bottom-up design and is realized by
abstraction, because the architectural models are derived
from low-level IP’s. A main advantage of this design concept
is that predefined components are validated and verified and
are proven fault-less because of that. The behavior of
components in the system context is tested by embedding
them in the overall system model. This validation of the
specifications causes a reduction of design errors and time.

Mission Level Design deals with the fact that complex
systems have too many parameters to check them all in every
possible situation. Therefore typical operational requirements
have to be defined and included as use cases in the
formalization of the specification. The validation takes place

by the simulation of the overall system model, where
missions directly define driver and evaluation.

Formal methods alone do not guarantee the absence of
errors in the resulting system. Because of the nearly infinite
set of system states, a validation of the system behaivior can
not be realized. The goal is to guarantee fault-free behaviour
under all possible operational conditions. For mission critical
applications and those with high financial risks a fault-free
behaviour of the system under operational conditions is
essential. That means possible operational conditions have to
be defined as operational requirements and included in the
formalization of the specification. These definitions base on
missions. The sequence diagrams, which serve as description
of scenarios within virtual worlds, are derived from those
missions. So, Mission Level Design is the description of a
mission in a virtual world, an overall system simulation for
defined operational requirements and the design test on
mission level.

3. AUTONOMOUS UNDERWATER VEHICLE
We use the Mission Level Design concept for the design

of an autonomous underwater vehicle (AUV). An AUV is a
highly complex system and its loss would be very expensive.
The design risk is immense. The aim of our work is to find
answers to the following questions:

• Are the manoeuvres successful under limited
resource and given environmental conditions?

• What happens with the battery power during the
mission?

• Is the data bus design correct?

• Do we get enough sensor data?

Figure 3: Overall system model

For this reason we need a simulation tool, which supports
Mission Level Design, MLDesigner [9]. It allows the
simulation of different model types in one model. There exist
basic models for time discrete, synchronous data flow, finite
state machines and continuous time models. It is also

 57

possible to import BONeS and Cossap models or to develop
own models in C++.

We have started to build the overall system model for the
autonomous underwater vehicle, which is hierarchical and
parametric as depicted in figure 3. The environment and the
autonomous underwater vehicle are placed at the highest
level. Simultaneously, this mirrors the idea of Mission Level
Design, which is to examine a system inside its environment.

The environment involves all relevant information about the
surrounding. Therefore it consists of three relevant parts:
First, there is the current of the sea, which is position
dependent. Second, there may be other targets or obstacles.
Finally, a collision detection for all the objects has been
realized.

The autonomous underwater vehicle is modeled by a set of
sub-models representing important components. For an
overview look at figure 4.

Figure 4: AUV model

It is taken from MLDesigner and shows the systems and
modules of the AUV. These are:

• o cooling system

• o payload

• o trimming system

• o autonomous guidance system

• o propulsion system

• o power generation

• o energy management

• o emergency system

At the moment, most of the systems (the ones marked italic)
are predefined only and will be implemented later. Each
subsystem stands for fundamental functions. They will be
designed for a real autonomous underwater vehicle by
specialists on this topic. These experts use special models,
which are too detailed for an overall simulation. Because of
that, we use generalized versions of those models for the
simulation.

The propulsion system includes engine and AUV dynamics.
The equations of motion are adopted from Fossen[2] and
Brutzman[3]. This model supplies the global position and the
local velocity of the AUV, see 5.

The autonomous guidance system consists of the control
computer, the sonar and the inertial navigation system (INS).
This model is shown in Figure 7.

The computer system controls the velocity and the position of
the AUV. A path planning module creates the desired values.

Figure 5: Propulsion system model

Figure 6: Autonomous guidance system model

Additionally, the computer system includes an image
processing module to analyze the sonar image. Its results are
used by a collision avoidance module, which is interacting
with the path planning module.

The sonar model, depicted in figure 8, is used to detect
objects in the surrounding of the vehicle. As a functional
model it does not base on exact physical behaviour. Instead a
geometrical approach is used mapping physical parameters to
geometrical ones. The sonar model receives the position of
the AUV (pos auv) and those of the other objects (pos
obj), which are expressed in global coordinates. That’s the
reason why the object positions are first transformed into
AUV coordinates. The SonarHardware-block controls the
sonar’s field of vision and behaves as follows: It pans from
minPing to maxPing and back in the sonar plane with a
steering increment of delta. The sonar pauses wait iterations

 58

after each ping. A complete sonar image will be signaled on
the sweep output. The sonar position is used to transform the
object positions in the sonar coordinate system. Here the
SonarView-block checks, if the objects are in the field of
vision. This happens in dependency of the run signal from
the SonarMotion block. The accepted space for the field of
vision is defined by ±maxAngleH and ±maxAngleV (in the
horizontal and vertical plane, respectively) and the maximum
distance maxDist. The SonarView output is a stream of
objects in the field of vision. Their local sonar positions are
transformed back to local AUV positions. These coordinates
together with the sweep signal build the sonar output. For the
visualization of the simulation result some values are logged
by the print blocks.

Figure 7: Autonomous guidance system model

Figure 8: Sonar model

4. MISSION AND RESULTS

As a first test mission we have chosen the following
situation: The vehicle has to keep its velocity and has to
avoid collisions with appearing objects. To test it five fix
objects are lying in the path of the AUV. This mission is to
meander in 100 m Depth and to find all obstacles. The
simulation results can be used to test the dynamic behavior of
the vehicle and to test the parameter settings of the sonar.

The AUV starts at a position (0, 0, 0) with a velocity (2, 0,
0), whereas the (3×1)-vector describes the three translational
positions (m, deg) or velocities (m/s, deg/s). The fix objects
are at the coordinates (400, 500,-100), (650, 175,-100), (870,
300,-100), (900, 300,-100) and (900, 320,-100). The sea has

a current of (1, 1, 0). As mentioned above, the goal of this
mission is to hold the starting velocity and to avoid collisions
with objects, that appear in the sector ±10. in front of the
autonomous underwater vehicle. The sonar scans a sector of
±22.5. and pauses one simulation step after each ping, which
has a beam shape of 1.8.. The maximum range of the sonar is
80m and the steering increment amounts to 1.8..

The simulation results are shown below.

Figure 9: Global trajectory - top view

Figure 10: Global trajectory - side view

The global trajectory of the specified mission is shown in
figures 9 and 10. Figure 10 explains that the vehicle does not
reach the water surface at first. The mission stops at about 20
meters below. By the work of the thrusters a correction of the
position takes place, the vehicle moves to the surface. The
next diagram (Figure: 11) shows three curves. The upper one
defines the course of the AUV. The yaw angles for
meandering are clearly detectable. The straight line near zero
shows the constant velocity of about 2 m

Figure 11: uz-theta

 59

Figure 12: z-control

The last curve provides the control of the depth. The
diving process is divided in two and the surfacing process in
three parts.

Figure 12 gives the angle swings for the depth control and
the activation phase of the thruster.

Figure 13 plots the obstacles and the figure 14 the
scanned and detected obstacles. In the sonar field of vision
three obstacles are detected. The problem is the reduced
angle of vision while changing the course in curves like
meandering. This requires an in time conformist control of
the sonar depending on the predefined route in the mission
plan.

For another detailed example, an earth observation
satellite, see [7].

Figure 13: Obstacles

Figure 14: Founded obstacles

5. CONCLUSION

Several tools have been introduced during the last years,
addressing system design problems separately, but leaving
the problem of overall system verification unsolved.
However, these tools rarely interoperate with each other,
making the verification problem extremely difficult. To work
around these limitations, designers are attempting to link
different tools through co-simulation techniques. This tedious
process distracts the designers from the main design task, is
error prone and inefficient for large system verification. In
Ilmenau we are in the process of developing the mission level
design tool MLDesigner, visit the page
http://www.mldesigner.de. It’s multidomain simulator
permits the seemless integration of the design flow from
mission/operational level to implementation handoff and test
of complex systems for the first time. We have presented the
idea of Mission Level Design on the example of an
autonomous underwater vehicle. The concept of MLD was
explained, an overall system model was presented and used
for testing the parameter settings of an AUV sonar. For a
better evaluation of trajectories, a 3D visualization tool
should be used. Another important fact of our future work is
the management of different missions in one database.

REFERENCES

[1] Synopsis: Cossap Reference Manual. 1993

[2] T.I. Fossen, Guidance and control of ocean vehicles,
John Wiley & Sons Ltd. 1994

[3] D. P. Brutzman, A virtual world for an autonomous
underwater vehicle, dissertation Naval Postgraduate
School Monterey California 1994

[4] Cadence Alta Group: BONeS-Designer Modeling
Handbook. 1996

[5] O. Rumpf, Eine rechnergestützte
Entwicklungsumgebung für integrierte Verhaltens- und
Leistungsuntersuchungen am Beispiel von KFZ-
Datenbussystemen. TU München, Dissertation, 1996

[6] FZI: Abschlussdokumentation des FZR Projektes. FZI,
1996

[7] V. Zerbe, et al.: Mission Level Design of Control
Systems. In: Proceedings of SCI/ISAS 5th International
Conference on Information Systems, page 237-243,
1999

[8] V. Zerbe, Th. Liebezeit, T. Radtke, Mission Level
Design in Robotics. In: Proc.-CD 10th International
workshop on robotics in Alpe-Adria-Danube region
(RAAD’01) Vienna, May 2001

[9] [9] MLDesigner: http://www.mldesigner.com

