
 55 

 
 

MISSION LEVEL DESIGN 
OF COMPLEX AUTONOMOUS SYSTEMS 

 
Volker Zerbe 

Department of Automatic Control and System Engineering,  
Technische Universität Ilmenau, Germany 

e-mail: volker.zerbe@tu-ilmenau.de 
 

Invited Paper 
 

Abstract – In this paper the idea of Mission Level Design 
(MLD) for complex autonomous systems, especially for  
autonomous underwater vehicles is presented. Mission Level 
Design can be thought of as system design on an abstract 
level as well as an overall simulation in virtual worlds. It can 
be used to test the design of complex systems. Missions 
(generalized use cases) embed the system and describe user 
requirements for the system design. This concept helps to find 
problems in early design phases and offers developers a first 
idea of system performance and characteristics.  

MLDesigner (a design tool of the latest generation) is 
used for the design of an autonomous underwater vehicle 
(AUV). In this paper an overall system model with functional, 
architectural and environmental aspects is presented. This 
model is used to solve design questions through the 
simulation of user defined missions in a virtual world. The 
results of the simulation are shortly considered. 
 

1 INTRODUCTION 

Today more and more complex systems have to be  
eveloped.The complexity of electronic systems is doubling 
every 1.5years. We have now a complexity 100 times higher 
then in 1990. At the same time the time-to-market 
requirements are growing shorter, therefore the product life is 
shrinking. The complexity of a mobile phone is comparable 
to the  complexity of a workstation build 15 years ago but 
will have an essentially shorter product life. The increasing 
complexity raises the probability of errors. 60 percent of all 
ASIC designs fail. Independent specialists design modules 
described by the system specification. If there is an error 
within the specification it will be found during the testing 
period of the system. But this probably causes iterations back 
to the design phase, which are expensive. Therefore it would 
be better to find this kind of errors in the early design phase. 

Future systems will be so complex that an overall 
simulation in its totallity is impossible. The solution is an 
breakthrough in the design of complex embedded systems. 
This shifts the center of development to early phases of the 
design process. We call it the 4th generation of electronic-
design-automation tools: the system design on mission level. 
Previous design concepts started to deal with more complex 
systems by using levels of abstraction. The first steps were 
hardware description languages and followed with those for 
algorithms and systems. The system level was reached by 
coupling different design tools. Examples are SES-
Workbench with Object-Geode [5] or Matrixx with 
Statemate [6]. In spite of this, there is no general possibility 

to simulate both hybrid reactive/transformatic behavioral and 
architectural models in a common performance simulation 
like an overall system simulation. What is the actual 
situation? BoNES [4] and Cossap [1] are end-of-life, 
Cadence still sells VCC. Since 2000, MLDesigner, a tool of 
the 4th generation exists, figure 1. In this way, Mission Level 
Design (MLD) is just another step to the consequent 
formalization of the design process. 

 

 
Figure 1: MLDesigner [9]: Mission level design approach 

2 MISSION LEVEL DESIGN 

What does system design on mission level mean? It stands 
for design at the mission or operational level in order to 
consider all dependencies early in the design. It is the 
description of a mission in a virtual reality like an overall 
system simulation for defined operational conditions.  

 
 

Figure 2: System design on mission level 
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It offers a closed design- flow from mission level to silicon 
and it allows the test of the design on mission level in a 
virtual world as well. The shift of the design automation to 
more abstract levels is based on a consequent formalization 
on all levels. Therefore the implementation can be done 
automatically, if the formalization starts early in the design 
phase. An advantage is that the time-to-market decreases. 
This results from the fact that in an early phase the design is 
proven as free of faults and the requirements are fullfilled. 
The breakthrough in the design of complex embedded 
systems will be achieved because of the overall approach. 
The overall system model consists of functional, architectural 

and environmental components, which define different 
aspects of the system in a virtual world. The properties of 
those components are listed below: 

• Functional models are the feasible parts of the 
specification of the system or its components. They 
describe the functional characteristics (continuous or 
discrete systems, software), therefore the behaviour 
of a system or component. 

• Architectural models provide a description of the 
available resources. They are used to examine the 
performance characteristics of a system or 
component. Normally, one functional model is 
mapped on different architectural models to find the 
best configuration. 

• The environmental model, a set of mathematical 
models, describes relevant parts of the surroundings. 
Not yet implemented components may be integrated 
into the environment, too. 

 

Up to now, the system design process is top-down 
oriented. Starting from the system level the draft is 
subdivided and becomes refined multiple times until the 
implementation. Now it is possible to design the system on 
the system level only, as shown in Figure 2. The 
implementation is affected by automation of the specified 
components. 

In chip production complex systems are designed based 
on predefined and re-usable components, called Intellectual 
Properties (IP). IP’s are part of huge libraries of different 
application fields. They consist of functional and detailed 
descriptions for the implementation. The system build with 
IP’s is put on the silicon. Specification models of the 
predefined components are integrated within the design 
phase. This process is a bottom-up design and is realized by 
abstraction, because the architectural models are derived 
from low-level IP’s. A main advantage of this design concept 
is that predefined components are validated and verified and 
are proven fault-less because of that. The behavior of 
components in the system context is tested by embedding 
them in the overall system model. This validation of the 
specifications causes a reduction of design errors and time. 

Mission Level Design deals with the fact that complex 
systems have too many parameters to check them all in every 
possible situation. Therefore typical operational requirements 
have to be defined and included as use cases in the 
formalization of the specification. The validation takes place 

by the simulation of the overall system model, where 
missions directly define driver and evaluation. 

Formal methods alone do not guarantee the absence of 
errors in the resulting system. Because of the nearly infinite 
set of system states, a validation of the system behaivior can 
not be realized. The goal is to guarantee fault-free behaviour 
under all possible operational conditions. For mission critical 
applications and those with high financial risks a fault-free 
behaviour of the system under operational conditions is 
essential. That means possible operational conditions have to 
be defined as operational requirements and included in the 
formalization of the specification. These definitions base on 
missions. The sequence diagrams, which serve as description 
of scenarios within virtual worlds, are derived from those 
missions. So, Mission Level Design is the description of a 
mission in a virtual world, an overall system simulation for 
defined operational requirements and the design test on 
mission level. 

3. AUTONOMOUS UNDERWATER VEHICLE 
We use the Mission Level Design concept for the design 

of an autonomous underwater vehicle (AUV). An AUV is a 
highly complex system and its loss would be very expensive. 
The design risk is immense. The aim of our work is to find 
answers to the following questions: 

• Are the manoeuvres successful under limited 
resource and given environmental conditions? 

• What happens with the battery power during the 
mission? 

• Is the data bus design correct? 

• Do we get enough sensor data? 

 

Figure 3: Overall system model 

 

For this reason we need a simulation tool, which supports 
Mission Level Design, MLDesigner [9]. It allows the 
simulation of different model types in one model. There exist 
basic models for time discrete, synchronous data flow, finite 
state machines and continuous time models. It is also 
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possible to import BONeS and Cossap models or to develop 
own models in C++. 

We have started to build the overall system model for the 
autonomous underwater vehicle, which is hierarchical and 
parametric as depicted in figure 3. The environment and the 
autonomous underwater vehicle are placed at the highest 
level. Simultaneously, this mirrors the idea of Mission Level 
Design, which is to examine a system inside its environment. 

The environment involves all relevant information about the 
surrounding. Therefore it consists of three relevant parts: 
First, there is the current of the sea, which is position 
dependent. Second, there may be other targets or obstacles. 
Finally, a collision detection for all the objects has been 
realized. 

The autonomous underwater vehicle is modeled by a set of 
sub-models representing important components. For an 
overview look at figure 4. 

 

Figure 4: AUV model 

 

It is taken from MLDesigner and shows the systems and 
modules of the AUV. These are: 

• o cooling system 

• o payload 

• o trimming system 

• o autonomous guidance system 

• o propulsion system 

• o power generation 

• o energy management 

• o emergency system 

At the moment, most of the systems (the ones marked italic) 
are predefined only and will be implemented later. Each 
subsystem stands for fundamental functions. They will be 
designed for a real autonomous underwater vehicle by 
specialists on this topic. These experts use special models, 
which are too detailed for an overall simulation. Because of 
that, we use generalized versions of those models for the 
simulation. 

The propulsion system includes engine and AUV dynamics. 
The equations of motion are adopted from Fossen[2] and 
Brutzman[3]. This model supplies the global position and the 
local velocity of the AUV, see 5. 

The autonomous guidance system consists of the control 
computer, the sonar and the inertial navigation system (INS). 
This model is shown in Figure 7. 

The computer system controls the velocity and the position of 
the AUV. A path planning module creates the desired values. 

 
Figure 5: Propulsion system model 

 
Figure 6: Autonomous guidance system model 

 

Additionally, the computer system includes an image 
processing module to analyze the sonar image. Its results are 
used by a collision avoidance module, which is interacting 
with the path planning module.  

The sonar model, depicted in figure 8, is used to detect 
objects in the surrounding of the vehicle. As a functional 
model it does not base on exact physical behaviour. Instead a 
geometrical approach is used mapping physical parameters to 
geometrical ones. The sonar model receives the position of 
the AUV (pos auv) and those of the other objects (pos 
obj), which are expressed in global coordinates. That’s the 
reason why the object positions are first transformed into 
AUV coordinates. The SonarHardware-block controls the 
sonar’s field of vision and behaves as follows: It pans from 
minPing to maxPing and back in the sonar plane with a 
steering increment of delta. The sonar pauses wait iterations 
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after each ping. A complete sonar image will be signaled on 
the sweep output. The sonar position is used to transform the 
object positions in the sonar coordinate system. Here the 
SonarView-block checks, if the objects are in the field of 
vision. This happens in dependency of the run signal from 
the SonarMotion block. The accepted space for the field of 
vision is defined by ±maxAngleH and ±maxAngleV (in the 
horizontal and vertical plane, respectively) and the maximum 
distance maxDist. The SonarView output is a stream of 
objects in the field of vision. Their local sonar positions are 
transformed back to local AUV positions. These coordinates 
together with the sweep signal build the sonar output. For the 
visualization of the simulation result some values are logged 
by the print blocks. 

 
Figure 7: Autonomous guidance system model 

 
Figure 8: Sonar model 

 

4. MISSION AND RESULTS 

As a first test mission we have chosen the following 
situation: The vehicle has to keep its velocity and has to 
avoid collisions with appearing objects. To test it five fix 
objects are lying in the path of the AUV. This mission is to 
meander in 100 m Depth and to find all obstacles. The 
simulation results can be used to test the dynamic behavior of 
the vehicle and to test the parameter settings of the sonar. 

The AUV starts at a position (0, 0, 0) with a velocity (2, 0, 
0), whereas the (3×1)-vector describes the three translational 
positions (m, deg) or velocities (m/s, deg/s). The fix objects 
are at the coordinates (400, 500,-100), (650, 175,-100), (870, 
300,-100), (900, 300,-100) and (900, 320,-100).  The sea has 

a current of (1, 1, 0). As mentioned above, the goal of this 
mission is to hold the starting velocity and to avoid collisions 
with objects, that appear in the sector ±10. in front of the 
autonomous underwater vehicle. The sonar scans a sector of 
±22.5. and pauses one simulation step after each ping, which 
has a beam shape of 1.8.. The maximum range of the sonar is 
80m and the steering increment amounts to 1.8.. 

The simulation results are shown below. 

 

 
Figure 9: Global trajectory - top view 

 

 
Figure 10: Global trajectory - side view 

The global trajectory of the specified mission is shown in 
figures 9 and 10. Figure 10 explains that the vehicle does not 
reach the water surface at first. The mission stops at about 20 
meters below. By the work of the thrusters a correction of the 
position takes place, the vehicle moves to the surface. The 
next diagram (Figure: 11) shows three curves. The upper one 
defines the course of the AUV. The yaw angles for 
meandering are clearly detectable. The straight line near zero 
shows the constant velocity of about 2 m 

 

 
Figure 11: uz-theta 
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Figure 12: z-control 

 

The last curve provides the control of the depth. The 
diving process is divided in two and the surfacing process in 
three parts.  

Figure 12 gives the angle swings for the depth control and 
the activation phase of the thruster.  

Figure 13 plots the obstacles and the figure 14 the 
scanned and detected obstacles. In the sonar field of vision 
three obstacles are detected. The problem is the reduced 
angle of vision while changing the course in curves like 
meandering. This requires an in time conformist control of 
the sonar depending on the predefined route in the mission 
plan. 

For another detailed example, an earth observation 
satellite, see [7]. 

 
Figure 13: Obstacles 

 
Figure 14: Founded obstacles 

5. CONCLUSION 

Several tools have been introduced during the last years, 
addressing system design problems separately, but leaving 
the problem of overall system verification unsolved. 
However, these tools rarely interoperate with each other, 
making the verification problem extremely difficult. To work 
around these limitations, designers are attempting to link 
different tools through co-simulation techniques. This tedious 
process distracts the designers from the main design task, is 
error prone and inefficient for large system verification. In 
Ilmenau we are in the process of developing the mission level 
design tool MLDesigner, visit the page 
http://www.mldesigner.de. It’s multidomain simulator 
permits the seemless integration of the design flow from 
mission/operational level to implementation handoff and test 
of complex systems for the first time. We have presented the 
idea of Mission Level Design on the example of an 
autonomous underwater vehicle. The concept of MLD was 
explained, an overall system model was presented and used 
for testing the parameter settings of an AUV sonar. For a 
better evaluation of trajectories, a 3D visualization tool 
should be used. Another important fact of our future work is 
the management of different missions in one database. 
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