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Abstract - The aim of this work is 10 examine the
performances of the linearself-organized neural network for
blind® separation of nonstationary signals. The network
performs signal separation from their linear combination in
the absence of amy prior information abou! the signal
properties, except the jict that the source signals are
statistically independent of each other. In order 1o achieve
faster convergence, the basic learning algorithm is modified
using the additional adaplive momentum term. To illustrate
the performances of the proposed method for blind
separation, the network is applied to the nonstationary
seismic signals. )

TINTRODUCTION

The problem of how 1o separate source signals from their
composite linear or nonlinear transformation appears in a
number of fields which involve analysis and processing of
the observed signals. such as speech, biomedical signals,
etc. If the unknown sowce signals have to be recovered
from their observed composite signals without any prior
information about the properties of source signals and
ransformation  coefficients, it is a question of blind
separation. Although it ssems that this problem can not be
solved in general, sevenl methods based on some prior
assumptions on the stiistical properties of the source
signals have been developed. Conventional methods.
applicable 1o the non-Gaussian signals, which offer the most
general approach to the problem of blind separation, are
pased on the evaluation of higher-order statistics of the
observed signals in oder to find out the inverse of
transformation and thus directly vicld to the component
signals. A neural approach. described in [1. enables both
the Linear and nonlinear decorrelation using the higher-order
curnulants of the observed signals. The method proposed in
[2]. which is also 2 newral one. acquires the recovery of
nonstationary source signals using only the second-order
moments of the composite signals without regarding the
type of statistical disiribution of the source signals. In the
particular case of periodic signals. the decomposition of 2
composite signal inlo its periodic componenis can be
achieved by using the Singular Value Ratio Spectrum {3}

The objective of this paper is to examine the performances
of neura} network for blind separation of non-stationary
signals originally propased in {2). The network perfoms &
separation of the observed composile signals into ther
constituents using the fact that the source signals are
statistically independent of cach other. The network s self-
organized in the scnse that it changes ils connectjon weights
according to the antiHebbian rule in a direction that

reduces the comelation bolween its cuiputs. In

achieve faster convergence. the basic leaming algorithm,
proposed in [2]. is modified by employing the additional
adaptive momentum term. The performances- of the
proposed modified algorithm are demonstrated on the basis
of real seismic data applied to the network inputs. In this
case, the signal separation has been achieved in zbout four
epochs through the acrual sequences.

I SEPARATION NEURAL NETWORK

In this Section, we briefly describe the linear self-organized
neural network with lateral connections for blind separation
of nonstationary signals. If the number of source signals is
equal 1o the number of observed composite signals, ie.
sensors, the network performs a decomposition of
composite signals, represented by a linear combination of
source signals. into their constituents.

In matrix notation, the observed composile signals
:,»(1), i=1,...,N, considered in this work, are given by:
(1) = ax(7) 6]

where s(I):[s,(t), .,..xN(t)]T is a vector of composite
signals and A=[a,-/~] is the affine transformation matrix.
be nonsingular,
x(I):{x,(t)‘ ....XN(I)]T. xj(r)‘j=l....N are reffered to as
statistically independent source signals with zero means,

which implies for the covariance matrix R(z) of x(1)10 be a
diagonal one:

R(t)= diag{rl(l) ..... r,,(r)} = diag{(xlz(r)> ..... <,\i,(l)>}

It has been shown that. if rz(r)l/rj-(t) change in time. 1t is

which is assumed 10

possible 1o recover source signals from the observed signals
ir: the absence of any prior knowledge about the properties
of A and x)(l), except the fact that the source signals xj(l}
are uncorrelated with each other {2]. However, the recovery
of source signals has an ambiguity which exisls in the
nonzero scale parameiers. d;. since ;X .. “dyxp, . Where
ip; .,p,\v} is any arbitrary permutation of {t....N}. may also
be considered source signals. Due to this ambiguity, blind

separation is defined as any process which vields 10 the
following type signals:
X1} =DPx{y) (2)

D 15 2 diagonal matrix D=a’1ag{d, ..... d,;}. and P 15 2

The proposed nctwork for blind




separation recejves sensor signals as inputs  and provides
output signals y;(t).i:l.....N as estimates of the source
signals x{1). In mairix potation, the dynamics of each
output unil s given by the first-order linear differential
equalion:

LD = - o)

TT

where the matnx C=[c,-j} denotes the mutual Jateral

- connections beiween the output units, which are adapted
according to the anti-Hebbian rule. If we assume that the
Lime constant T is sufficiently small, the equation (3) can be
replaced by:

1) =(1+C)'slr) )

The aim is to determine matrix C so that the outputs yi{1) be
the estimates of the source signals x(7). According to the
equations (2) and (4), C takes the general form:

C=APTD -} )

With respect to the additional constraint ¢;; = 0, which leads
' to D= diag{APT}, C becomes:

-1
. c= APT[diag{APT}J -1
Matrix C. obviously, can not be calculated directly {rom
(6), since the wansforrmation  matrix A s unknown.

However. it has been proved [2] that the result given by (6)
is equivalent to the following statements:

©)

(1) in the output covariance matrix, the terms <y,~(r)y1(1)>4

\
i,j=1...Nii# j, where (*) denotes the ensemble average
of *. arc all zeros at any time instant 11

(II) the non-negative scalar function given by:

/

Qy(r)y(ﬂ%} @

=

1oy (1))~ log

i=]

where R(1) = diag{rl(t)....,rh,(l)} is the covariance matrix of
the network ouiputs y{7}. 1akes zero at any time instant £
This means thal signal separation can be realized through
the leaming process by determining C so that Q(C. R(I)) has
the minimum every time:

[y 20(CRIN)

Lj=l. Nua=j
dr écy;

@®

. According 10 the equation (8). Q(C. R(l)) attains s
minimum with a steepest descent search. T is the time
constant that controlles the leaming speed. If T is chosen 1o
be Jarge. i.e. C varies very slowly. (8) may be approximated
by the following equation,

T<£>:(I+Cr)*{(,,,ag@(,)y(,y>)'l<y<,)y(,y‘>,f> o

at J

o

which describes the way of adapting the conneclion weights
in the sense of the statistical average. The implementation

of (9) requires for diag(y(l)3’(l)T>. or (\f?(t)) 10 be

evaluated in real time.The basic leaming algorithm.
developed from (9). uses the moving average #;1} in order

S P,
To estimate y-({) i Teal time; and is"given by the equations=—-—-

2} e e e e

dgld) -, oy
T’—‘(;,—+¢,-U)=y?u).x=1 ..... N (10)

T%?—:(1+CT)—1{(diagcn(r))“ y(t);(t)T—}} Can
where dif):diag{ﬁ(r).”.,gb,q(l)} and g;(f)denotes the

moving average of y2(1} in time interval 7", in which 0!
are assumned 1o be constant.

III MODIFICATION OF LEARNING ALGORITHM

In order to achieve faster convergence, we have applied the
“heavy ball” method [4] as a modification of the steepest
descent algorithm described in the previous section. This
method employes the fact that the connection weights ¢;;.

by means of which the minimization is performed, possess
their own "mass”, ie. inertion. This feature of the
parameters being adapied may be expressed by means of an
additional tlerm in the equations describing the learning
algorithm. Due to this, it is possible to fasten the
convergence of the leaming algorithm and to enable the
escape from the Jocal minima during training. The modified

Jeaming  algorithm,  developed using the Euler
approximation of the equation (8). is given by:

S0(C.RW) . .
Cij(k+1) = CU(L'>~/7 I +7’;j(k)(ffj(k)_(ij(‘5_ 1)) 12

gy

The term 7U(k) represents the "mass” associated with any
state of the conneclion weighis during adaptation. The
values of 7’ij(k)~ which depend on the o’Q( C. R(k))/a’ci;. are
Limited to 0< 7‘:]»(1:) <1. In order o enable the escape from
the Jocal minimna. the term 7’[;‘( k) needs 10 be defined in the
following manner:

SQ(C.R(K)

» ifthe value of increases. yij(l:) -0
acy

i 5Q(<E.R(k))

éc;;

= 0,7kl =1

in our ;xperimenl. we have apphed the foliowing definitien
of yilk):

S0(C.R(). (13
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Fig. 1. a) Source signals b) Sensor signals

To demonstrate the properties of the proposed “heavy ball”
method, we have applied it to decompose the linear
combination of two source signals given by:

x,(k) = 2sinlkr 1200)- k) (14)
xy(k} = 2sin{kz /400)- (k) (15)

k) and (k) are Gaussian signals with zero mean and
unity variance. The coefficients of the linear transformation
were given by the matrix A

{1 08} ]
A= 1
o 1) a9

and the parameters of the learning dynamics are chosen 10
be @ =08 and S =000L Source signals given by the
equations (14) and (15), and sensor signals, which represent
their linear combinations, are shown in figures 1.2) and 1.b)
respectively.
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Fig. 3. Adaptation of the connection weights
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Fig2. Errors obtained by applying: a) gradient method
b) “Heavy ball" method -

the performances of the original
steepest descent algorith and the proposed “heavy ball”
algorithm applied 0 the signals at hand is given in Fig. 2
and 3. Figures 2.2) and 2.b) are graphical representations of
the differences between the original source signals, x;(k),

.Comparison between

and their estimates obtained at the network outputs. y,-(k). —
Figure 3. shows the adaptation of the connection weights ©

cij(k) through the leamning process, in which the weights

tend towards the corresponding  values al-jof the

transformation matrix A (16). Ttis obvious that the proposed
modified leaming algorithm provides faster convergence
compared to those of the original algorithm proposed in 23.
The leaming speed of both algorithms does not depend on
the magnitudes of source signals, but on the ri(t)/rj(t), and

is faster for stronger fluctuations of r[(t)/rj(l) -

1V SEPARATION OF SEISMIC SIGNALS

To demonstrate the properties of the described neural
network in practical applications, the modified leaming
algorithm is applied to seismic signals in order to separaie
the components generated by a number of origins.

Seismic signals, which represent the earth's response 10
excitations arising from natural phenomena or from man-
made acoustic sources, are 2 complex of distinct
components with various strengths and arrival times, which
are generated and propagated independently of each other.
The rtesulting composite signals, observed by seismic
sransducers, Tepresent the linear combination of their
constituents [5): The' waveform"of the: rnan-made’ seismic:
signals, considered in this experiment. depends primarily or-
the exciting force. ie.-on the actual class of -origins.of ..
it is possible 10 determine the _
the detected waveform only:—

class of origin. considering

résuli in a waveform which can not uniquely point out 10 the
particular. class of origins and it should be of interest 0
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d) Connection weights during training

separate it In the example shown, we have applied real
seismic data, given by a linear combination of two source
signals. to the network inputs. The actual source signals.
generated by a man and a car. are detected by geophones
(Fig. 4.a). Sensor signals. which represent the linear
combination of source signals, are obtained according 1o the
equation (1), and the linear transformation matrix was givea
by (16).

The sequences. applied to the network input, (Fig. 4.b).
consisted of 1000 samples per second. The network
parameters are chosen to be @ =0.8 and § =0.001 and the
initia] values of Cij and g;; are set 1o 0 and 1, respectively.

The figures above represeni the results of cur experiment.
Output signals, obtained at the end of the leaming process as
the estimates of the source signals, are given in Figure 4.c).
It has been shown that signal separation can be achieved in
about four epochs through the considered sequences. Figure
4.d) represents the adaptation of the connection weights
through the Jearning process.

V CONCLUSION

In this paper, we are concemed with the blind separation of
nonstationary signals using the linear self-organized neural
network with lateral connections. The proposed network
performs a separation of composite signals into the source
signals in the absence of any prior information about the
statistical properties of the sources, except the fact that they
are statistically independent of each other. The connection
weights are iteratively adapted during the learning process
__in which the basic steepest descent algorithm minimizes the
time-dependent cost function in order to obtain the estimates
of the source signals as the network outputs. It has been

shown that faster convergence can be achieved by
modifying the steepest descent algorithm using the adaptive
momentum term. The performances of the proposed
modified algorithm are demonstraled on the example of real
seismic data.

The described method for blind separation of nonstationary
signals is valid only in those cases, in which the number of
sources is equal to the number of sensors and the kinear
transformation matrix is nonsingular. In our further research,
we will alempt 1o avoid these constraints by using the
matrix generalized inverses. We will also consider the cases
in which the coefficients of the linear transformation change
in time.
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