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Abstract—This paper presents the implementation and 
evaluation of the YOLOv8 detection method within the domain of 
ground-penetrating radar (GPR) imagery analysis. YOLOv8, an 
evolution of previous YOLO models, is employed for object 
detection tasks, providing efficient and accurate results. The study 
focuses on detecting and classifying three distinct objects: corner 
reflector, anti-tank (AT) mine, and glass bottle. Training data 
preparation involves annotating radar images and splitting them 
into training, validation and testing sets. The YOLOv8 model is 
trained on labeled data, and its performance is evaluated based on 
precision, recall, and F1-score metrics. Results demonstrate high 
accuracy in detecting and classifying objects, with minimal false 
positives. Further testing in real-world scenarios is suggested to 
assess model robustness under varied environmental conditions 
and object densities. 
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I. INTRODUCTION

In today's times, one of the still prevalent inhumane military 
tactics is the laying of minefields. According to the latest 
information [1], mines or other explosive devices are still present 
in 59 countries, including the former Yugoslav republics: 
Croatia, Serbia, and Bosnia and Herzegovina. According to the 
regulations of the United Nations Department of Humanitarian 
Affairs (UNDHA), 99.6% of mines and unexploded ordnance 
must be safely removed for the civilian area to be considered 
mine-free. This significantly differs from military demining, 
where only a few paths need to be cleared for vehicle passage, 
with little attention paid to surrounding areas. Humanitarian 
demining is typically done manually, making this operation 
extremely risky and time-consuming. Various solutions have 
been proposed in the literature to facilitate demining operations 
and increase safety. This paper focuses on detection and 
classification of objects once a B-scan of the scene has been 
obtained.  

Several methods have been proposed in the literature. 
Authors in [2] introduced a new method for detecting and 
extracting parabolas from ground-penetrating radar images. 
They introduced a data filtering method using wavelet analysis 
and Gabor filtering. They proposed an automated method for 
detecting and classifying hyperbolas. The classification 
methodology was based on the analytic hierarchy process 
method, introducing a classification coefficient and considering 
the weights of proposed conditions and coefficient weights. The 
proposed method enabled a reduction in object detection time. 
Authors in [3] present an automated approach for detecting 
parabolas and their peaks in ground-penetrating radar images. 
The article introduced a two-step method. Firstly, the Fast-
RCNN model was used for parabola detection, and secondly,  

image processing methods were employed for extracting the 
parabola peaks. The method was evaluated on both real and 
simulated images. The main obstacle for successful parabola 
detection using the proposed method on real images was the 
presence of noise. Challenges of detecting and locating parabolic 
objects in GPR images were addressed in [4]. The YOLOv7 
neural network was used, enabling real-time object detection. It 
was employed in the first step of the proposed method. In the 
second step, a two-stage curve fitting method was utilized. 
Evaluation of the YOLOv7 model showed an 11.1% 
improvement in detection accuracy and an 18.2% improvement 
in detection speed compared to the YOLOv5 model, using the 
same hardware and data.  

This paper presents the implemented offline method for 
object detection called YOLOv8, successor to the methods 
YOLOv7 and YOLOv5. YOLOv8 is the latest version of the 
object detection method named YOLO (You Only Look Once), 
first released in May 2023. The YOLOv8 method is developed 
based on YOLOv5 and represents an update to this approach. 
YOLOv8 is based on the architecture of a deep convolutional 
neural network (CNN). In section Ⅱ creation of a custom dataset 
is presented utilizing a modular Stepped-Frequency Continuous 
Wave (SFCW) Radar. Section Ⅲ presents training of the 
YOLOv8 model and analyses metrics such as precision, recall, 
and F1-score. In section Ⅳ YOLOv8n model results are 
presented on a test image set. The paper concludes with Section 
V, providing suggestions for further testing. 

II. CREATING A CUSTOM DATASET

For the purpose of training YOLOv8 model we have gathered 
our own data using a modular SFCW radar described in [5], 
which operates within the 500MHz to 2.5GHz frequency band 
with a fixed frequency step of 10MHz. All measurements were 
performed in a controlled environment shown in Figure 1. We 
have limited the number of objects of which radar signatures 
have been obtained to three: corner reflector, AT (anti-tank) 
landmine, and full glass bottle depicted in Figure 2. 

Figure 1: Test environment with 2D rail system and soil box 
underneath for data gathering. Radar position is marked in yellow. 
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Figure 2: Objects from which radar signatures were acquired: Corner 

reflector (a), AT mine (b), and full glass bottle (c) 

Radar images were captured with a single object on the surface 
or buried beneath the surface at depths ranging from 0 to 30 cm. 
We captured 200 radar images of AT mine, 100 images of 
corner reflector, and 100 images of glass bottle. The images 
were divided into three groups: training images, validation 
images, and test images, which were used for the final 
evaluation of the neural network's learning performance after it 
had already been successfully trained. The latter group of 
images is separate from the training set and is not used during 
the learning process. The training set consisted of 165 images of 
AT mines, 75 images of corner reflectors, and 75 images of full 
glass bottles, validation set consisted of 30 AT images, 20 
corner reflector images and 20 bottle images, while the test set 
consisted of 5 images for each class. All images were 640x480 
pixels in size and were annotated using CVAT tool [6]. 

 

III. YOLOV8 MODEL TRAINING AND EVALUATION 
YOLOv8 operates by first dividing the input image into a grid 
of cells. For each cell, YOLOv8 predicts a set of bounding boxes 
along with class probabilities for each bounding box. YOLOv8 
then utilizes the non-maximum suppression (NMS) algorithm, 
which filters overlapping bounding boxes and selects the most 
probable bounding box for each object in the image. YOLOv8 
supports various operations such as object detection, image 
segmentation, position estimation, tracking, and object 
classification. This model is available in five versions: 
YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), 
YOLOv8l (large), and YOLOv8x (extra-large). We have chosen 
the YOLOv8n model for our application. 
 
 

 
Figure 3: Training results of YOLOv8n model after 300 epochs with 
custom data. 

 

In Figure 3, we observe the training results of the YOLOv8n 
model after 300 epochs. Graphs labeled with (B) illustrate 
bounding box metrics. In the first three loss functions, we notice 
that there is still some room for improvement, which could be 
achieved by increasing the number of epochs or by selecting a 
larger model or by finely tuning the hyperparameters of the 
network. Nevertheless, we observe that the precision of 
predictions and the recall are close to 1, so we opt not to retrain. 
 
Figures 4-6 depict precision-recall curves and F1 metrics at 
various confidence score thresholds. In our application, 
detecting and distinguishing mines from other objects is crucial, 
with minimizing false negatives being paramount, while false 
positives are not as critical from a safety perspective. The 
precision-confidence curve seen in Figure 4 illustrates how 
precision varies with different confidence thresholds. Ideally, 
we aim for high precision at all confidence levels. It gives us the 
ratio of correctly predicted positives to all predicted positives. 
The equation for calculating precision is as follows: 
 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 (1) 

 
 

 
Figure 4: Precision-Confidence curve 

 
The recall-confidence curve in Figure 5 illustrates recall at 
various confidence thresholds. A high recall across the entire 
range is desirable. Recall is the ratio of correctly predicted 
positives to all actual positives. The equation for calculating 
recall is: 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

 (2) 
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Figure 5: Recall-Confidence Curve 

The F1-confidence threshold curve depicts the F1 score (the 
harmonic mean of precision calculated by equation (1) and 
recall (2)) at various confidence thresholds (Figure 6). A higher 
peak signifies better model performance. The F1 score is 
calculated using the following equation: 
 

𝐹𝐹1 =  2∙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

           (3) 
 

 
Figure 6: F1-Confidence Curve 

 

IV. RESULTS 
Figures 7-10 show the results of the YOLOv8n model on the 

test set of images. The bounding boxes in green along with their 
corresponding labels and confidence scores in red indicate the 
detected objects. All predicted objects in the test image set are 
identified correctly and have confidence scores between 0.8 and 
0.95. However, there are instances where a detected object in the 
image is not actually present in the scene, as seen in Figure 10, 
indicating a false positive. It's noteworthy that the confidence 
score for such detections is quite low, specifically 0.31 for 
instance shown in Figure 10. Such detections can be filtered out 
by introducing a minimum confidence score threshold.  

Table Ⅰ shows results of YOLOv8n on the test set images. As 
mentioned before each class consists of 5 test images. Images 
indexed from 1-5 represent AT mine, images 6-10 depict corner 
reflector, and images 11-15 showcase full glass bottle results. 
Each image contained only one object. We can identify two 
instances where an object was detected incorrectly, at image 
index numbers 12 and 13. The mean confidence scores for 
detecting an AT mine, corner reflector, and full glass bottle were 
0.858, 0.902, and 0.824 respectively. 

 

 

 

 
TABLE Ⅰ: Results of YOLOv8n with test dataset 

Test 
Image 
Index 

No. Of 
Detected 
Objects 

Confidence Score 
AT 

mine 
Corner 

Reflector Full Bottle 

1 1 0.82 / / 
2 1 0.86 / / 
3 1 0.84 / / 
4 1 0.87 / / 
5 1 0.9 / / 
6 1 / 0.9 / 
7 1 / 0.88 / 
8 1 / 0.91 / 
9 1 / 0.95 / 
10 1 / 0.87 / 
11 1 / / 0.82 
12 2 / 0.27 0.81 
13 2 / 0.31 0.87 
14 1 / / 0.8 
15 1 / / 0.82 

 
 

 
Figure 7: Correct classification of AT landmine in the test image. 

 
 

 
Figure 8: Correct classification of corner reflector in the test image. 
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Figure 9: Correct classification of full glass bottle in the test image. 

 

 
Figure 10: Correct classification of full glass bottle but incorrect 

detection of corner reflector in the test image. 

V. CONCLUSIONS 
It was demonstrated within this study that YOLOv8n model 

performs relatively well and provides accurate predictions. One 

factor contributing to the model's high effectiveness is the 
controlled environment in which the data were captured. 
Furthermore, only one object was consistently present at a 
specific location in GPR images. Further testing of the system 
would be necessary in real-world scenarios where multiple 
objects are present in the image, some of which may be buried at 
unknown locations. Additionally, the influence of soil type and 
soil moisture percentage on the prediction accuracy needs to be 
examined. The images were captured in soil composed of a sand-
clay mixture in a ratio of 9:1 with a relative humidity of 0%. 
Favourable results can also be attributed to the small number of 
object classes and to objects themself which significantly differ 
in shape and have substantial differences in dielectric constant 
which makes them more distinguishable. In order to facilitate 
reproducibility and further research in this area, the training 
dataset used in this study can be made available upon request. 
Interested parties are encouraged to contact the authors for access 
to the dataset. 
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