
11th International Conference on Electrical, Electronics and Computer Engineering (IcETRAN), Nis, 3-6 June 2024

Multithreaded programming in LabVIEW
measuring applications

Josif Tomić
Faculty of Technical Sciences

Novi Sad, Serbia
tomicj@uns.ac.rs

Miodrag Kušljević
Termoelektro Enel AD

Belgrade, Serbia
miodrag.kusljevic@te-enel.rs

Platon Sovlilj
Faculty of Technical Sciences

Novi Sad, Serbia
platon@uns.ac.rs

Nemanja Gazivoda
Faculty of Technical Sciences

Novi Sad, Serbia
nemanjagazivoda@uns.ac.rs

1Abstract—Modern measuring instruments are today software-
oriented and rely entirely on information and computer
technologies. Virtual instruments or, to be more precise,
microprocessor-based measurement devices usually consist of a
general purpose PC or Laptop computer and various types of
measuring cards. Measurements are generally reduced to writing
programs in different program packages, such as: LabVIEW,
Matlab, and the like. For this reason, engineers and scientists are
extremely interested in the high level of computer and
information technology, as this will ensure that their measuring
devices have superior performance. In this paper, methods that
enable multithreaded programming in the LabVIEW program
have been analysed and compared. Multithread programming
allows parallel execution of tasks and significantly accelerates the
data acquisition process in measuring applications.

 Index Terms—data acquisition, LabVIEW, measurement,
multicore processing, multithreading.

I. INTRODUCTION

For decades, the LabVIEW program package has been a
basic tool for implementing measuring applications [1] and
digital signal processing [2]. Program tasks can range from
very simple to very complex, such as, for example, SCADA
systems. To solve such complex tasks it is necessary to provide
very complex computer and IT equipment. As computer
hardware reaches its limit in the execution speed of instruction,
engineers begin to realize more complex systems that would
remind that some tasks are executed simultaneously in parallel.
Thus, computers were created with multitasking and
multithreading capabilities.

In computer architecture, multithreading is the capability of
a CPU that has one or more cores (multi-core) to support
multiple threads at the same time. It is understood that the
operating system is capable of providing this kind of work. In a
multithreaded application, the processes and threads share the
resources of a single or multiple cores, which include the
computing units, the CPU caches, and the Translation
Lookaside Buffer (TLB).

Core is a hardware term that describes the number of
independent central processing units in a single computing
component. A thread is a software term for the basic ordered

sequence of instructions that can be passed through or
processed by a single CPU core.

A CPU cache is a hardware cache used by the central
processing unit (CPU) of a computer to reduce time and
energy, to access data from the main memory. A cache is a
smaller, faster memory, closer to a processor core, which
stores copies of the data from frequently used main memory
locations. Most CPUs have different independent caches,
including instruction and data caches, where the data cache is
usually organized as a hierarchy of more cache levels (L1, L2,
etc.).

Memory organization in multicore computing systems
affects communication overhead and LabVIEW program
execution speed. Common memory architectures are shared
memory, distributed memory, and hybrid shared-distributed
memory. Shared memory systems use one large global
memory space, accessible by all processors, providing fast
communication. However, as more processors are connected to
the same memory, a communication bottleneck between the
processors and memory occurs. Multithreading extends the
idea of multitasking into applications, so you can subdivide
specific operations within a single application into individual
threads. Each of the threads can run in parallel. The OS divides
processing time not only among different applications but also
among each thread within an application. Applications that
take advantage of multithreading have numerous benefits,
including the following: more efficient CPU use, better system
reliability, and improved performance on computers [3].

II. MULTICORE PROGRAMMING

A multiprocessor represents multiple physical processors,
whereas a multicore processor represents multiple cores in a
single physical processor. That means a multiprocessor can be
built from a number of multicore processors. A multicore
processor resides on a single socket.

Replacing a single-core computing system with a multicore
system that uses processing units with clock speeds equal to
that of the single-core system shortens LabVIEW program
execution time. Ideally, program execution speed increases by
a factor equal to the number of cores on the multicore
computing system (for example, a four times speed increase on
a quad-core system); however, communication overhead

ISBN 978-86-6200-001-9 ©2024 AM & ETRAN https://doi.org/10.69994/11Ic24014MLI2.2 - Page 1 of 6

83

between threads and cores prevents ideal execution time
improvement. If the LabVIEW program in question is
completely sequential and running on a single processor, it
needs less shared processor time with other software, leading
to program execution time improvement. If the program in
question is completely parallel and consists of tasks of equal
size having no data dependency, you can achieve near ideal
execution time improvement [4].

In order to achieve parallel execution in software, hardware
must provide a platform that supports the simultaneous
execution of multiple threads. Computer architectures can be
classified by two different dimensions: a) number of
instruction streams that a particular computer architecture may
be able to process at a single point in time, b) number of data
streams that can be processed at a single point in time.

The introduction of multicore processors provides a new
challenge for software developers, who must now master the
programming techniques necessary to capitalize on multicore
processing potential. These programming techniques are task
parallelism and data parallelism [5].

Task parallelism is simply the concurrent execution of
independent tasks in software. Consider a single-core
processor that is running two programs at the same time.
Although these applications run on separate threads, they still
ultimately share the same processor. On the dual-core machine,
these two applications essentially can run independently of one
another. Although they may share some resources that prevent
them from running completely independently, the dual-core
machine can handle the two parallel tasks more efficiently.

Data parallelism is a programming technique for splitting a
large data set into smaller chunks that can be operated on in
parallel. After the data has been processed, it is combined back
into a single data set. With this technique, programmers can
modify a process that typically would not be capable of
utilizing multicore processing power, so that it can efficiently
use all processing power available.

III. AMDAHL'S LAW

Amdahl's law [6] is used to find the maximum expected
improvement of the overall system, when only one part of the
system is improved. It is often used in parallel processing to
predict theoretical maximum acceleration when using multiple
processors. The law was named after computer architect Gene
Amdahl. The law was introduced by the American Federation
of Information Processing Societies (AFIPS) at the Spring
Joint Computer Conference in 1967.

Amdahl's law has formulation:

1
1

Speedup
SS

n

 (1)

In this equation, S is the time spent executing the serial
portion of the parallelized part of the program and n is the
number of processor cores. Note that the numerator in the
equation assumes that the program takes 1 unit of time to
execute the best sequential algorithm.

To better understand Amdahl's law, let's go through a
calculation example. The total time to execute a program is set
to 1. The non-parallelizable part of the programs is 40% which

out of a total time of 1 is equal to 0.4. The parallelizable part is
thus equal to 1-0.4=0.6. The execution time of the program
with a parallelization factor of 2 (2 threads or CPUs executing
the parallelizable part, so n is 2) would be:

1 1.42
1 0.40.4

2

Speedup (2)

Amdahl's Law is a statement of the maximum theoretical
speed-up you can ever hope to achieve. The actual speed-ups
are always less than the speed-up predicted by Amdahl's Law.

IV. MULTITHREADING WITH LABVIEW
LabVIEW automatically divides each application into

multiple execution threads. The complex tasks of thread
management are transparently built into the LabVIEW
execution system [7].

LabVIEW uses preemptive multithreading on OSs that
offer this feature. LabVIEW also uses cooperative
multithreading. OSs and processors with preemptive
multithreading employ a limited number of threads, so in
certain cases, these systems return to using cooperative
multithreading. The execution system automatically creates
multitask VIs using threads. However, a limited number of
threads are available. For highly parallel applications, the
execution system uses cooperative multitasking when available
threads are busy. Also, the OS handles preemptive
multitasking between the application and other tasks.

In traditional programming languages, the program must be
divided into several independent threads for parallel execution.
Each thread can work at the same time. However, there is a
difference between writing code that is safe to run in a
multithreaded application, and writing code that runs in
parallel to increase the performance you received from the
multicore system. This difference is often illustrated in the
drivers or functions used when writing the program.
Multithread-safe functions can be called from multiple threads
and do not overwrite their data, which prevents conflicts from
blocking execution. If one thread calls a function, all other
threads trying to call this function must wait for the first thread
to end. The reentrant functions go one step further by allowing
multiple threads to call and execute the same function
simultaneously, in parallel [8].

In a multithreaded LabVIEW program, an example
application might be divided into four threads: a) data
acquisition, b) mathematical analysis of signal, c) numerical
and graphical presentation, and d) data storage of results on
disc. You can prioritize each of these so that they operate
independently. Thus, in multithreaded applications, multiple
tasks can progress in parallel with other applications that are
running on the system.

In many applications, a program calls measurement
instruments. These instrument calls often take a long time to
complete. In a single-threaded application, a synchronous call
effectively blocks, or prevents, any other task within the
application from executing until the operation completes.
Multithreading prevents this blocking. While the synchronous
call runs on one thread, other parts of the program that do not

MLI2.2 - Page 2 of 6

84

depend on this call run on different threads. Execution of the
application progresses instead of stalling until the synchronous
call completes. In this way, a multithreaded application
maximizes the efficiency of the CPU because it does not idle if
any thread of the application is ready to run [9].

V. PARALLEL PROGRAMMING IN LABVIEW

In principle, LabVIEW programs are initially capable of
executing program parts in a completely parallel manner
because they are based on a data flow and not a code flow. For
example, if there are two independent For Loops, that are not
connected to the wire, it is quite clear that they can be
performed in parallel. When started, the LabVIEW compiler
program immediately begins to work on identifying the
parallel sections of the program. Once identified, these
independent pieces are assigned to the thread that LabVIEW
automatically creates. This multithread process is very
important because it is automatically executed by the
LabVIEW program, so even ordinary users without much
programming knowledge can use this extraordinary technique
[10].

Some techniques that are most commonly used for parallel
execution of the program are: a) While Loops, b) Shift
Registers, c) Parallel For Loops, d) Timed Loops, e) Queues, f)
Pipelining, and g) CPU Pool Reservation.

VI. EXPERIMENTAL RESULTS OF MEASUREMENT
In order to verify the multithread capability of working in

the LabVIEW program and how much it contributes to the
speed of execution of measuring applications, four programs
have been implemented using the multithread principle.

The following parameters of the electricity network are
measured: signal amplitude, signal frequency, and harmonic
spectrum of the voltage signal. In addition, all the sampled
values were recorded in a text file on a computer disk.

Measuring equipment consists of a voltage measuring
transformer, a USB measuring card USB6210 (16 AI, 16-bit
ADC, 250 kS/s), and a PC desktop computer that has an Intel
Core Processor i3-4170. The Processor Base Frequency is
3.7 MHz, and the processor has 2 cores.

The sampling rate of the voltage signal was 25600 Hz, and
4096 samples were sampled in the continuous mode. The time
interval was 160 ms or 8 periods of 50 Hz signal.

To check the execution speed of these LabVIEW programs,
the Query Performance Counter located in the kernel32.dll
program library is used and called from the LabVIEW program
via the Call Library Function Node. This counter is in the
processor, and it works completely independently of it. It is
considered to be the most accurate reference time in a PC.
Windows provides APIs that you can use to acquire high-
resolution time stamps or measure time intervals.

A. LabVIEW algorithm
In the first experiment, a program was developed that uses

only a LabVIEW algorithm for automatic task recognition that
can be performed in parallel. The program was implemented
through three Flat Sequences. In the first sequence, the Query

Performance Counter is started, and its value is taken. In the
second Flat Sequence, the acquisition of the voltage signal is
carried out and the frequency of the signal as well as the
harmonic spectrum is calculated. At the front panel, these
values are presented graphically and numerically. The
numerical values of the signal are stored in a file on the
computer disk. In the third Flat Sequence, a new current value
of the Query Performance Counter is taken and the estimated
time required for these tasks is calculated and this value is
displayed on the front panel in numerical form. Program
execution speed was measured over 100 measurements, and
the arithmetic mean was 160.13 ms and the standard deviation
was 0.91 ms.

The measurement results showed that this method is very
good and that LabVIEW has a very high-quality algorithm for
recognizing tasks that can be executed in parallel. Otherwise,
in the literature, there is a very large number of papers dealing
with this topic that describe various methods for the effective
execution of multithread programs [11]-[13].

Fig. 1. shows the front panel and Fig. 2. shows the block
diagram of the realized program.

Fig. 1. Front panel of the realized program.

MLI2.2 - Page 3 of 6

85

Fig. 2. Blok diagram of realized program.

B. Parallel While Loops
While Loops are a fundamental structure that can be used

with a variety of programming patterns (task parallelism, data
parallelism, pipelining, or structured grid). These programs are
often used in combination with Shift Registers. The programs
are very easy to implement, and the results of the
measurements have shown that they have excellent
performance. With While Loop, you can greatly speed up
Hardware-in-the-Loop Applications (HIL). Program execution
speed was measured over 100 measurements, and the
arithmetic mean was 160.11 ms and the standard deviation was
0.87 ms. Fig. 3. shows a program that uses the Parallel While
Loop and Shift Registers for parallel execution of the program.

Fig. 3. Block diagram of Parallel While Loop.

C. Parallel For Loops
The Parallel For Loops are a valid approach for intensive

operations that need to execute over and over in a loop,
without having dependencies. When parallel iterations are
allowed on a For loop, LabVIEW executes chunks
concurrently. By default, LabVIEW schedules chunks by size
from larger to smaller. Program execution speed was measured
over 100 measurements, and the arithmetic mean was
160.19 ms and the standard deviation was 0.94 ms. Fig. 4.
shows a program that uses For Loop for parallel execution of
the program.

Fig. 4. Block diagram of Parallel For Loops.

MLI2.2 - Page 4 of 6

86

Fig. 5. Block diagram of Queues structure.

D. Queues structure

Queues are used for synchronizing data between multiple
loops, and they are most used for the implementation of
program-type producer-consumer architecture. This
architecture is a general purpose and is not directly intended
for parallel programming. Fig. 5. presents this algorithm.
Unfortunately, practical measurements have shown that this
method has many problems with the synchronization of
multiple threads. Data Flow Parallelism - Pipelining can be
used with Queues and with While Loop structures. Program
execution speed was measured over 100 measurements, and
the arithmetic mean was 160.15 ms and the standard deviation
was 0.89 ms. Fig. 6. shows the Pipelining execution of
multithread operations.

Fig. 6. Pipelining strategy.

When programming using multithread, attention should be
paid to some problems, such as: thread synchronization, race
conditions, deadlocks, shared resources, and data transfer
between processor cores. In general, the CPU and data bus
operate most efficiently when processing large blocks of data.

VII. CONCLUSION
In this paper, four methods of multithread programming in

the LabVIEW program have been practically implemented and
tested. These methods allow parallel execution of tasks in
measurement-based applications. Based on the obtained
measurement results, it can be seen that the LabVIEW program
has a very powerful tool for parallel execution of tasks, which
makes it probably the best program for measuring and
acquiring signals.

ACKNOWLEDGMENT
This research has been supported by the Ministry of

Science, Technological Development, and Innovation
(Contract No. 451-03-65/2024-03/200156) and the Faculty of
Technical Sciences, University of Novi Sad through the project
“Scientific and Artistic Research Work of Researchers in
Teaching and Associate Positions at the Faculty of Technical
Sciences, University of Novi Sad” (No. 01-3394/1).

REFERENCES
[1] R. King, Introduction to Data Acquisition with LabView, McGraw-Hill

Higher Education, New York, USA, 2012.
[2] N. Kehtarnavaz, N. Kim, Digital Signal Processing System-Level Design

Using LabVIEW, Elsevier Inc., New York, USA, 2005.
[3] National Instruments, Archived: Multicore Programming with LabVIEW,

[Online]. Available: https://www.ni.com/en/ support/documentation/
supplemental/07/multicore-programming-with-labview.html

[4] National Instruments, Multicore Programming with LabVIEW Technical
Resource Guide, [Online]. Available: https://download.ni.com/
evaluation/labview/ekit/ multicore_programming_resource_guide.pdf

[5] G. Tan, N. Sun, G. Gao, "Improving Performance of Dynamic
Programming via Parallelism and Locality on Multicore Architectures",
IEEE Transactions on Parallel and Distributed Systems, Vol. 20, Issue:
2, pp. 261-274, Feb. 2009.

MLI2.2 - Page 5 of 6

87

[6] G. Amdahl, "Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities", AFIPS Conference Proceedings
(30), pp. 483–485. 1967.

[7] National Instruments, Differences Between Multithreading and
Multitasking for Programmers, [Online]. Available:
https://www.ni.com/en/support/ documentation/ supplemental/07
/differences-between- multithreading-and-multitasking-for-
programm.html.

[8] National Instruments, Using LabVIEW to Create Multithreaded DAQ
Applications, [Online]. Available: https://www.ni.com/en/support/
documentation/ supplemental/06/using-labview-to-create-multithreaded-
daq-applications.html.

[9] R. Bitter, T. Mohiuddin, M. Nawrocki, LabVIEW Advanced
Programming Techniques, Taylor & Francis Group, New York, USA,
2007.

[10] N. Dorst, “Using LabVIEW to Create Multithreaded VIs for Maximum
Performance and Reliability”, National Instruments - Application Note

114, July 2000. [Online]. Available:
http://labview360.com/document/an/pdf/an114.pdf

[11] N. Li, G. Gong, X. Peng, Z. Chen, “Scene Matching Algorithm
Evaluation Based on Multi-core Parallel Computing Technology”, WRI
World Congress on Software Engineering, Xiamen, China, 19-21 May,
2009.

[12] P. Bilski, W. Winiecki, “Analysis of the Time Efficiency Assessment in
the Virtual Measurement Systems”, IEEE International Workshop on
Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications, Rende (Cosenza), Italy, 21-23 September,
2009.

[13] W. Winiecki, P. Bilski, “Multi-Core Programming Approach in the Real-
Time Virtual Instrumentation”, IEEE International Instrumentation and
Measurement Technology Conference, Victoria, Vancouver Island,
Canada, 12-15 May, 2008.

MLI2.2 - Page 6 of 6

88

