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Abstract—Tracking-by-detection algorithms in visual
tracking applied to videos use Kalman filters (KFs) for
trajectory estimation in order to localize tracked objects.
While the KF is a strong baseline, it cannot model non-
linear motion or adapt to specific domains. In this work,
we empirically show that more accurate predictions of an
object’s position at the next time step can be obtained by
using a Neural Ordinary Differential Equation (NODE)
model. On the MOT20 benchmark dataset, NODE outper-
forms a linear model used by the KF, and a non-linear
model learned by a recurant neural network, by 0, 6% and
4.6% as measured by tracking accuracy, respectivaly.

I. INTRODUCTION

The goal of object tracking is to estimate an object’s
track (or trajectory) over a series of frames. Tracking
consists of two sub-tasks: object detection and object re-
identification. In the case of tracking objects in videos,
which is the focus of our work, the detection step
consists of placing precise bounding boxes around all
objects of interest in each video frame. For object re-
identification, it is required to keep track of the objects’
identity over time. Object tracking is one of the key com-
ponents in many applications like autonomous driving,
robotics and theft detection.

Tracking can be separated into two similar and fairly
connected tasks: single- object tracking (SOT) and multi-
object tracking (MOT). In the case of SOT, one target
is specified in the first frame, and it is required to
track that target in the following frames of the video.
Ideally, SOT tracker should be able to track any arbitrary
object that does not need to be in any specific class.
Multi-object tracking additionally requires association
(re-identification) between tracked objects from previous
frame and new detections in the current frame [1].

In this work we propose a new trajectory prediction
model based on ODE-RNN [2] architecture (NODE vari-
ant [3]). The model is compared to standard trajectory

(motion) estimation models: Kalman Filter (KF) [4]
and Recurrent Neural Network (RNN) [5]. The results
demonstrate that ODE-RNN outperforms KF and RNN
in tracking accuracy.

II. RELATED WORK

Tracking-by-detection is currently one of the most
effective paradigms in both SOT and MOT. Many of
the recent works in this field are based on SORT [6],
DeepSort [7] and JDE [8]. Tracking-by-detection as-
sumes that there already exists a very accurate detection
algorithm. Algorithms based on SORT usually use KF
[4] with the constant-velocity model assumption for ob-
ject bounding box position estimation. KF estimates the
joint distribution of an object’s bounding box coordinates
in the current frame, conditioned on all information
observed thus far. The predicted bounding box position
is used for association with new detections given by the
detection model. The main drawback of using a KF is its
inability to model non-linear motion which occurs when
the camera is not static, or even when objects have non-
linear movement.

Non-linear variations of KF already exist, such as
extended Kalman Filter (EKF) [9] and the unscented
Kalman Filter (UKF) [10]. One alternative for non-linear,
non-Gaussian state modeling is the family of particle
filters [11], which are based on Monte-Carlo sampling.
These methods work well for the non-linear motion
modeling but they can’t directly learn from the data like
the deep learning based motion models.

Another alternative approach to model an object’s
motion is to learn from past data. Recurrent Neural
Networks (RNN) [5] have been successfully used for
time-series related tasks and are capable of non-linear
motion modeling. RNNs allow cycle connections be-
tween neurons, thus enabling it to store information
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from data over time intervals of arbitrary lengths. The
most popular architectures are LSTM (Long-Short Term
Memory) [12] and GRU (Gated Recurrent Unit) [13]
which partly resolve some of the main issues with RNN
like vanishing gradients during training. One example of
such successful work is TrajE [14], which improves the
performance of existing state-of-the-art trackers by com-
bining them with recurrent mixture density networks.
NODE is a new architecture that already surpasses RNNs
in model performance in many time-series tasks [3, 2].
In this paper we show that it can also surpass RNNs as
motion models.

III. NEURAL ORDINARY DIFFERENTIAL EQUATIONS

Neural Ordinary Differential Equations (NODE) [3]
are a family of deep neural network models that can be
understood as a continuous version of Residual Networks
(ResNets) [15]. ResNet transforms hidden state from
discrete time point t to t+ 1:

ht+1 = ht + ft(ht) (1)

where ht ∈ Rn is hidden state after layer t − 1 and
ft is a residual layer which can be any neural network
architecture. If we subtract ht from both sides we get:

ht+∆t − ht

∆t
= ft(ht) (2)

where ∆t = 1. In the limit ∆t → 0 we get the derivative
h′(t) = dh(t)

dt at the point t:

dh(t)

dt
= ft(ht) = f(h(t), t) (3)

From (3) we can see that the hidden state can be modeled
using an ODE with the initial condition h(0) = x where
x is the input data (e.g. image). Model output is h(T )
which can be computed using any black-box differential
equation solver (e.g. Euler method).

Some of the key benefits of using Neural ODEs
are memory efficiency, adaptive computation and ability
to naturally work with irregularly-sampled time series.
These models use numerical ODE solvers without back-
propagating through operations inside the solver. Instead,
gradients can be computed using the adjoint sensitivity
method [16] and there is no need to store intermediate
values during the forward pass through solver operations.
Resulting effect is constant memory cost as function of
depth while training a neural network.

Time required for ODE solvers to perform numerical
approximation can be reduced by lowering solver accu-
racy (i.e. increasing error tolerance). NODE speed can
be increased during inference after the model is trained.

NODE outperforms RNN when used for extrapolation
and interpolation for irregularly-sampled time series or
time series with high amount of missing data at arbitrary
time points. This is one of the main motivations for using

NODE for trajectory estimation in tracking applications
where bounding box detections can be missing in case
of occlusions or any detector errors.

IV. TRAJECTORY ESTIMATION

A trajectory prediction model inputs a sequence of
bounding box detections from times t − s, . . . , t − 1, t,
where t is the time of the last observed frame, and
outputs one or more future trajectory points, starting
from time t+ 1. One bounding box detection is defined
by 4 values [x, y, w, h] where x and y are coordinates
of the top-left corner of the bounding box, w is the box
width, and h is the box height. Bounding box coordinates
at time t are [x, y, w, h]t = [xt, yt, wt, ht]. For more
readable notation we are assuming that we deal with
only one object.

A. Data preprocessing

In our experiments preprocessing is used for all trained
neural network models (NODE and RNN). It is not used
for the Kalman filter. These transformations are cheap
and do not add any relevant overhead to computation
during inference. Inverse transformations are applied to
the model outputs, as shown in Fig. 1.

First order differences are computed for the trajectory
coordinates of each object followed by standardization
transformation. First order difference is a simple trans-
formation ∆Xt = Xt+1 − Xt where Xt is bound-
ing box at time t with values [x, y, w, h]t. Values of
∆Xt = [∆x,∆y,∆w,∆h]t can be related to a very
rough approximations of velocity at time point t. This
transformation makes learning easier for the model since
it is easier to learn trajectory dynamics (e.g. which way
the object is moving) from differences than from raw
coordinates.

All bounding box values are expressed in terms rela-
tive to the image size in the interval [0, 1]. After applying
first order difference transformation on the trajectory,
all values become close to zero. This makes model
learning slower unless network weights initialization is
set to appropriately small values. Thus, all differences
are standardized to have mean equal to 0 and variance
equal to 1.

B. ODE-RNN

The authors of ODE-RNN introduced a hybrid model
of NODE and RNN. Main advantage of ODE-RNN is
its ability to use additional input features for which
dynamics are not modeled with NODE [2].

Architecture overview of the our custom ODE-
RNN can be seen in Fig. 1. Transformed trajectory
[∆x,∆y,∆w,∆h]t is mapped to a latent vector zt using
an ODE-RNN encoder. The latent vector zt summarizes
relevant input trajectory information into a vector of
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Fig. 1. Overview of our custom ODE-RNN architecture implementation for trajectory estimation

smaller dimension. Using the latent vector zt as the
initial ODE condition, a latent trajectory is extrapolated
from zt+1 to zt+k using a NODE decoder with an ODE
solver. Lastly, extrapolated difference values are mapped
using a Multi Layer Perceptron (MLP) [17] to the data
space, which is then transformed to the final trajectory
prediction. For the encoder ODE-RNN architecture, a
combination of NODE with MLP and GRU is used. All
MLPs consist of two layers. Each layer is made up of a
linear mapping followed by layer normalization [18] and
a leaky ReLU activation function [19]. We use Runge-
Kutta fourth order method [20] ODE solver with fixed
step size equal to 0.25 as the default setup for inference
and training.

C. RNN

Architecture used for the RNN model is similar to
previously introduced custom ODE-RNN architecture,
but without NODE layer for encoder and with NODE
layer replaced by GRU in decoder.

V. EXPERIMENTS

Experiments are performed on the MOTChallenge
(MOT20) dataset (pedestrians) [21]. This dataset is
mainly used as a multi-object tracking (MOT) bench-
mark. The public MOT20 dataset consists of 2215 pedes-
trian tracks over 4 scenes with static camera views. Three
scenes: MOT20-01, MOT20-02 and MOT20-03 (1046
tracks in total) are used for training, while scene MOT20-
05 (1169 tracks) is used for the evaluation of trained
models.

By tracking each object in the video as an independent
trajectory, we extract sequences for single-object track-
ing. The KF is a popular method and serves as one of
the core components in SORT-like approaches for the
MOT20 dataset. Its performance is difficult to surpass.

A. Training

During training, each track (object bounding box tra-
jectory) is split into windows of consecutive time points.
For each object trajectory all windows are sampled using
a sliding window with step 1. For an object trajectory
of length n, a total of n−w+ 1 windows are sampled,
where w is window size. For each window trajectory,
values from time t−s to t (time of last observed values)
are used to predict the trajectory from t+1 to t+f . We
use s = 9 (last 10 observations) and f = 1 for model
training, but we also tested shorter input trajectories. In
our experiments we concluded that s can be lowered to 2
while keeping good model performance. For evaluation
we use f = 5 and report results for all time points in
between. The goal is to train a model which can learn
dynamics from trajectory history and generalize well. If
the motion model performs well for f = 1 but not for
f = 5 then it does not generalize well enough. The
window size w is always equal to s+ f + 1.

All ODE-RNN models are trained for 10 epochs with
AdamW optimization algorithm [22]. Starting learning
rate is 0.001 and it is multiplied by 0.1 every third epoch.
Each batch consists of 32 randomly sampled trajectory
window samples. ODE-RNN-S has 8-dimensional latent
space, while ODE-RNN-L has 32-dimensional latent
space. We used weight decay with value 0.05 for ODE-
RNN-S and 0.1 for ODE-RNN-L.

B. Evaluation

For model evaluation and comparison, we use mean
squared error (MSE) and tracking accuracy. Tracking
accuracy is defined as the average IOU (intersection
over union— measure of overlap between two bounding
boxes) between the predicted bounding box and the
ground truth bounding box. Models with lower MSE
tend to have higher tracking accuracy. Model trajectory
estimation is evaluated from time t + 1 to time t + 5
where t is the last observed time point at the time of
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TABLE I
COMPARISON BETWEEN TRAJECTORY ESTIMATION MODELS IN

TERMS OF MSE AND ACCURACY.

Model MSE[1..5] ↓ Acc[1..5] ↑

KF 1.63e-06 95.78%

RNN (GRU) 4.20e-06 91.78%

ODE-RNN-L 1.05e-06 96.38%

ODE-RNN-S 1.21e-06 95.89%

inference. We use MSE[a..b] and Acc[a..b] notation for
average metric scores from time point t+ a to t+ b.

We compare ODE-RNN with Kalman filter (default
linear model for trajectory estimation) and RNN (stan-
dard model for time-series extrapolation). For Kalman
filter we use implementation and parameters from BoT-
SORT [23] which is the state-of-the-art method that uses
a modified version of the constant velocity model. For
multi-step predictions, we employ the Kalman filter auto-
regressivelly: predictions from previous steps are used as
inputs for the next step. Prediction for one step ahead
is X̂t+1 = A · Xt where A is the constant velocity
motion model and Xt = [x, y, w, h]t is the bounding
box at time t. Predictions for the following steps are
X̂t+k+1 = A · X̂t+k = Ak ·Xt. Update step is skipped
since measurements are not yet observed. For ODE-RNN
we just need to specify multiple moments at which we
are interested in the bounding boxes. More precisely,
during the training we use time sequence [t + 1] and
during inference we use [t + 1, ...t + 5]. For RNN we
recursively predict the sequence of coordinates by using
output of the previous step t+ k as input to the current
step t+ k + 1.

We trained two ODE-RNNs with the same configura-
tion except for the number of parameters, defined by
the latent vector dimension. ODE-RNN-L is the best
estimator with 0.60% increase in accuracy compared to
Kalman filter and 4.60% increase in accuracy compared
to RNN. This model has 12.3K parameters while RNN
has 47.3K parameters which makes ODE-RNN almost
4 times more memory efficient during inference. The
smaller version ODE-RNN-S has only 1k parameters. It
still manages to outperform RNN by 4.11% in accuracy
with 47 times less parameters. Comparison between all
models can be seen in table I and comparison between
each model’s accuracy at each step from t+ 1 to t+ 5
can be seen in Fig. 2.

The main drawback of using NODE is slower training
and inference. On the other side, NODE have adaptive
computation and speed can be increased during inference
by decreasing ODE solver accuracy and thus decreasing

Fig. 2. Comparison between trajectory estimation models in terms of
accuracy for first 5 steps.

Fig. 3. Comparison between trajectory estimation models in terms of
accuracy for first 5 steps for model with and without weight decay.

model accuracy. In section V-D, we provide a more
detailed analysis of the difference in inference speed,
demonstrating that the model remains sufficiently fast
for real-time usage.

C. Importance of regularization

During experiments we observed that adding regular-
ization is hugely beneficial. Without it ODE-RNN model
fails to generalize for multi-step prediction when it is
trained as a single-step prediction model. Even if the
model is not overfitting on the single-step prediction
during training, the accuracy on multi-step prediction
degrades drastically for each step forward, as seen from
Fig. 3. This model performs worse than the KF and the
RNN.

With further analysis we observed that trajectories in
the latent space are diverging. Unregularized NODE tend
to generate irregular trajectories. This issue has been
already observed by other researchers [24, 25]. We re-
solved the problem of divergent latent space trajectories
via weight decay regularization [26].

We also trained another ODE-RNN model to predict
several future steps instead of a single step, without
using weight decay and achieve accuracy 96.85% which
outperforms ODE-RNN-L. However, these are not di-
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TABLE II
COMPARISON BETWEEN TRAJECTORY ESTIMATION MODELS IN

TERMS OF FPS.

Model FPS ↑

KF 3122.43

RNN (GRU) 353.39

ODE-RNN 74.61

rectly comparable, since in this experiment ODE-RNN
is provided with five-step supervision.

D. Inference speed comparison

In order to make comparison between the models
complete, We conducted a comparison of inference time
for KF, RNN, and ODE-RNN models on the MOT20
dataset, specifically the MOT20-05 scene. To assess
the performance, we performed sequential end-to-end
inference in a SOT manner for each track using a
single core of an Intel i7-12700K processor and a single
NVIDIA GeForce RTX 3070 GPU (for RNN and ODE-
RNN). The frames per second (FPS) for each model were
calculated by dividing the total time required to complete
inference by the total number of bounding boxes in
the dataset. The model inference speed comparison is
presented in Table II. Notably, there is no significant
difference in FPS between ODE-RNN-S and ODE-RNN-
L (referred to as ODE-RNN in the table). Although the
ODE-RNN model is slower compared to the KF and
RNN models, it still achieves real-time performance for
a standard 30 fps camera. Additionally, the speed of the
ODE-RNN model can be linearly increased by adjusting
the solver step.

VI. CONCLUSION

We have used a custom ODE-RNN architecture for
trajectory estimation and gained a significant accuracy
improvement over the Kalman filter and recurrent neural
network models. This architecture drastically reduces the
number of parameters compared to RNN, which makes it
suitable for low memory machines. Still, switching from
RNN to ODE-RNN may increase average time required
for training and inference.

VII. FUTURE WORK

Most tracking algorithms require an estimate of pre-
diction uncertainty. This is especially true for MOT
tasks, where we must make associations between pre-
dicted and detected bounding boxes for multiple simul-
taneous tracks. The cost of some detection-prediction
pairing depends on the statistical distance between them,
which is affected by the uncertainty. However, the main

focus of this paper are SOT tasks, where we know
in advance that there is only one object in the scene,
and the association problem is less pronounced. Adding
estimation uncertainty modeling to ODE-RNN would
make it a valid alternative to the Kalman Filter in MOT.

Trajectory estimation models should also be able to
learn specific motion patterns in case of scenes with
reccuring behaviour (e.g. factory monitoring). This ap-
proach should be tested on such datasets.
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