
 

  

Abstract—A new approach to determine improved initial 

solution for all-pass phase approximation, is presented in this 

paper. Most filter design methods are reduced to iterative 

procedures that require a good initial solution to ensure stable 

convergence to the global minimum i.e. optimal solution. 

Therefore, choosing an adequate initial solution is extremely 

important. The proposed algorithm yields a solution to a variety 

of filters designed by implementation of IIR all-pass filters. 

Finally, examples have been provided to illustrate the effectiveness 

of this approach. The proposed method does not demand 

calculation of any derivative of objective function. The suggested 

algorithm secures quasi-equiripple phase error in a very few steps 

regardless the phase shape. 

Index Terms—Initial solution, all-pass filter, parallel structure, 

phase approximation, equiripple phase error, arbitrary phase.  

 

I. INTRODUCTION 

Most of filters are designed to achieve a specified amplitude 

characteristic. This causes the deviation of the obtained phase 

response from the ideal one. Problem can be resolved by 

cascading of all-pass filters that work as a phase or group delay 

correctors. On the other hand, filters can be designed to 

approximate a certain phase characteristic. Compared to 

several traditional filter structures, parallel all-pass structure is 

more efficient for several reasons. The phase approximation is 

applicable to any all-pass recursive filter design problem. 

Filters designed according to this principle are suitable for real-

time implementation due to parallel processing which provides 

less time delay for the same order of resulting filter. 

There are two principles in design of all-pass filters based on 

phase approximation. The first one relays on the determination 

of the module and argument of the transfer function poles. The 

second order section could have either complex or real poles. 

The real poles may be positioned on positive and/or negative 

part of real axis inside the unit circle. Existence of positive real 

pole causes the first phase error extremum to be minimum, 

otherwise it would be maximum. According to that, the other 

approach has advantage due to unique optimal solution 

obtained in process of determining the filter coefficients. From 

initial solution the nature of the first extremum would be 

determined.  

The problem of designing digital all-pass filters is still in the 

center of attention nowadays. The required phase shape of the 
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all-pass filter depends on the type of the designed filter.  

Algorithms for determining the coefficients of the transfer 

function of these networks are mostly iterative and require 

knowledge of the initial solution, i.e. initial approximations. 

The problem is particularly observable when we deal with more 

complex networks, i.e. higher order system, when the iterative 

procedure converges to the global optimum only when the 

initial solution is sufficiently close to the final solution. The 

proposed method for initial solution determination can be 

equally well used in algorithms based on phase approximation 

and in group delay approximation procedures. For a given order 

of the filter, the approximation error curve needs to possess a 

maximum number of extrema, to allow this initial solution be 

used for the mini-max approximation. 

The determination of good initial solution for approximation 

of desired group delay of all-pass filter is proposed in [1]. A 

method is iterative and use the simplified equation for group 

delay of all-pass filter, neglecting the influence of the poles 

from lower half of the unit circle which corresponds to negative 

frequencies. This method adapts each pole location 

sequentially, one at a time. The problem of designing recursive 

digital filters whose frequency response approximates an 

arbitrarily prescribed function in the Chebyshev sense on a 

single interval is considered in [2]. The minimum phase error 

response was used as approximation criterion to design the all-

pass filters [3]. The shortages of this method include the needs 

of initial solutions and demanding computations. In [4], Tseng 

used the least-square phase error criterion to design digital IIR 

all-pass filters to have an arbitrarily predefined phase response. 

The method is used to design an unconstrained all-pass filter 

whose optimal filter coefficients are obtained by solving a set 

of linear equations in each iteration. 

Digital filter’s realization can be based on two all-pass filters 

in parallel configuration structure [5]. In the parallel branches 

there are filters of the appropriate order. Direct path in one 

branch leads to the constant phase while delay line would 

provide selective filter with approximately linear phase in 

design of piece-wise constant magnitude [6].  

Different filters such as band-stop, band-pass, lowpass and 

highpass filters can be realized with this approach. 

Furthermore, this configuration can achieve all the given 

specifications of the digital differentiator. It is quite well 
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known, that these realizations provide low passband sensitivity. 

The full advantage of this configuration is achieved when it is 

necessary to implement both complementary filters because the 

second one demands only one additional adder.  

A frequently applied approximation is equiripple 

approximation of the desired phase or magnitude response. The 

final equiripple solution is reached by iterative procedures that 

require an initial solution. The iterative procedure belongs to 

the class of mini-max approximation algorithms. The error 

function’s extrema of initial solution could have significantly 

different absolute values across the full frequency range. This 

is particularly expressive for high-order filters. Very big 

difference between values of the phase error extrema introduce 

problem how to correctly choose the allowed maximum phase 

deviation for first iteration. Poorly adopted permitted phase 

error cause more divergence. To mitigate the problem, 

differences between extrema of the phase error function should 

be minimal. The values of extrema of the phase error get closer 

to each other in absolute value, and the solution gradually 

becomes a quasi-equiripple phase error digital filter. This is 

achieved with the proposed iterative procedure. It is generally 

known that a higher order filter provides a smaller 

approximation error. The frequencies of digital filters are in the 

range [0, π]. By increasing the order of the filter, the area 

covered by one pole decreases. The idea how to reach equripple 

phase characteristic is based on assimilation of extrema. 

Intuitively we expect that phase error extrema values decrease 

if the dedicated approximation region is narrowed. On the 

contrary, if an approximation region becomes wider, the value 

of corresponding extremum increases.  

Although the phase approximation algorithm may find other 

applications, here in the present work we only discuss its 

application to the all-pass digital filter design problem. In this 

paper we introduce a new method for designing digital all-pass 

filters. According to a given desired phase response, a set of all-

pass digital filter coefficients is to be found such that the 

maximum phase error is minimized. The proposed method 

ensures an initial solution that would offer enough equations to 

determine all transfer function coefficients of the N-th order all-

pass filter. The proposed approach can be applied to arbitrary 

phase shape. 

II. INITIAL SOLUTION DETERMINATION 

The IIR all-pass filter of order N follows the response 
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By substituting 
jz e =  into (1) and after simple 

mathematical manipulations the phase characteristic of the 

digital all-pass filter can be obtained as: 
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The relations are derived according to which it is possible to 

obtain the unknown transfer function coefficients of all-pass 

filter. Determination of improved initial solution is specified 

for achievement of constant, linear and quadratic phase. 

 

A. Design of differentiator 

The differentiator design can be based on two IIR all-pass 

filters in parallel structure, with their orders satisfying N = M + 

1. To obtain filter with magnitude response to be linear function 

of frequency the difference between phases of the all-pass 

filters has to be specific [7]. One parallel branch could be either 

direct path or delay line. If delay line of order M is applied, all-

pass filter phase needs to approximate ideal phase of the form 

 

 ( )( ) 2arcsin
NIdeal M   


= − −  (3) 

 

 The phase error curve has N+1 extrema. Hence, there are N 

frequencies i  at which the phase error must have a zero-value 

defined as 
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For 0i =  and 1i N= +  the phase error is surely zero, taking 

into account the all-pass filter phase properties. The zone’s 

width zw  is the area at the frequency axis between two phase 

error zeros. Inside the zone, phase error has the same sign. So, 

the interval [0, π] is splitted into N +1 zones of the equal width: 

 

 
1, 1, , 1i i izw i N  −= − = +  (5) 

 

The proposed method is based on the zone’s width 

modification in order to achieve all extrema to have similar 

values. In every iteration step it is necessary to define the area 

reserved for correction of all zones. The total correction of 

zone’s width in k-th iteration is given with parameter   which 

is experimentally obtained as 
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The absolute values of phase error extrema 
i   in all zones 

are determined as  

 

 max ( ) ( ) , , 1, , 1
Ni N Ideal izw i N     = −  = +  (7) 

 

In k-th iteration, the average value of phase error extrema is 

calculated as  
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 Deviations 
i  of the phase error extrema 

i from the average 

value 
k  are , 1, , 1i i k i N  = − = + . In the next step, sum 

of absolute values of all maxima deviation from the average 

value need to be determined 
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Similarly, the total deviation of all minima can be formulated 

as 

 

 
1

(2 1 )
MINN

MIN

j

j p 
=

= − +  (10) 

 

where p is a parameter, whose value depends on the parity of 

the all-pass filter order, given by  

 

 
0, even

1, odd

N
p

N


= 


 (11) 

 

 Also, 1MAX MINN N N+ = +  holds. The new corrected 

values of zone’s widths izw  are obtained by  
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 which correspond to the zones with positive and negative 

phase error, respectively. Practically, the zones are modified 

according to their extremum influence on total deviation of the 

maxima i.e. minima. The new locations of the phase error zero 

frequencies are given by 

 

 1 0 0 1,2, 1i i iw w zw w i N−= + = = +  (13) 

 

The counter k is increased and the values of new phase error 

zeros and zone’s width to the current variables are assigned.  

 

 1 i i i ik k zw zw  +    (14) 

  

 At this point one iterative step is finished and one can 

proceed to the next step after halving  according to equation 

(6). Every beam in Fig. 1 and Fig. 2 corresponds to one zone 

where phase error has the same sign. From the phase error, 

presented in Fig. 1 for all-pass filter of order N=6, it is evident 

that the initial solution has the sufficient number of extrema but 

deviation between them is considerably large.   

Zone’s width is displayed in Fig. 2. The last zone given with 

brown bar has the biggest extremum and according to given 

procedure is downsized to become narrowest in order to 

equalize all extrema. For all-pass filter N=10 with 1 3m = , 

2 7m =  zone’s widths are displayed in Fig 3.  

As evident, the obtained phase error extrema have similar 

values so correction of zone’s width will be minor when the 

proposed procedure for error equalization will be applied. 

 

 
Fig. 1.  Values of all-pass filter of order N=6 phase error extrema for the initial 

solution and the first seven iterations obtained by proposed procedure in design 

of differentiator 
 

 
Fig. 2.  Values of zone’s widths of all-pass filter of order N=6 obtained in the 

first seven iterations starting with equidistant phase error zeros i.e. equal zones 
 

 
Fig. 3. Zone’s widths of initial solution for all-pass filter of order N=10 for R=2 

 

 

0 1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

Iteration step

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

Z
o
n
e
s
 w

id
th

Iteration step

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

z
w

i

i

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ELI1.4 - Page 3 of 6 ISBN 978-86-7466-970-9



 

As the algorithm iterates, the extrema get closer to each other 

in absolute value. Only four iterations were sufficient to get all-

pass filter with quasi-equiripple error. At that point it is easy to 

choose allowed phase error for further equiripple design as the 

mean value of all extrema taken with absolute values. 

The numerous experiments have shown that described 

procedure is powerful but demand carefully adopted parameter 

 . Adequately chosen   allows to successfully reach the 

equiripple solution with no need for further correction and 

derivate calculation. The criterion for termination of proposed 

procedure in that case is point where temporarily   value is 

less than adopted arbitrarily small number. 
 

B. Design of lowpass and bandpass filters 

The selective IIR filters with piece-wise constant magnitude 

could be realized as parallel connection of two all-pass filters. 

The direct path in one branch leads to the resulting filter with 

approximately constant phase. The order of other all-pass filter 

depends on the number of bands of selective filter.  

In the case of a lowpass/highpass filter design an all-pass 

filter has to be of the first order for instance. Such approach 

does not offer the opportunity to choose more complex all-pass 

filter in order to obtain lower approximation error. For instance, 

the second order all-pass filter is used if the aim is a notch or a 

band-pass/band-stop filter. Such limitations do not exist if the 

delay line is in one branch. Resulting filter would have the 

approximately linear phase and the approximation error is 

directly influenced by the all-pass filter’s order N. The order of 

delay line M directly depends on resulting filter nature. For 

instance, to obtain lowpass/highpass filter, it is necessary to 

holds N=M+1. To realize band-stop/band-pass filter N=M+2 

holds. Number of local extrema on the phase error 

characteristics in the passband is 
1m . The total number of 

extrema is N and 
2m  is number of extrema in the stopband.  

In every iteration step the all-pass filter phase approximates 

ideal linear phase given by 
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 As in differentiator case, the initial solution will be obtained 

solving system of equations 

 

 ( ) ( ) 0 1,2,i N i i N   − = =  (16) 

 

where are points on the frequency axis, where the phase error 

is equal to zero. Starting from equation (2), equation (17) can 

be given, after mathematical manipulations, in matrix form as  
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where 
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k
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which solving gives the transfer function coefficients 
ia . The 

interval [0, π] is now splitted into N zones. 
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To remind, in the differentiator case we start with all equal 

zones and consequence was significant difference between 

extrema values. After seven iterations the extrema become 

similar but the last zone is three times narrower than the others. 

At high frequencies all-pass filter phase deviate the most from 

ideal one. In order to get more uniform values for the phase 

error extrema of starting solution we decide to abandon the 

equal zone’s width at the beginning.  

The phase jump of π radians in the transition zone of lowpass 

filter will provide a pole the closest to the unit circle and it 

demands the narrowest zone. One can choose the ratio R 

between the widest and the narrowest zone. To achieve that, the 

normalized zone’s width in the passband is  
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and in the stopband are 
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Zone’s width is obtained from 
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Also, the phase and phase error of the initial solution for all-

pass filters N=10 and N=6 are given in Fig. 4.  The phase 

response curves of these filters have 10 i.e. 6 extrema, 

respectively. For both all-pass filters, in the passband there are 

3 extrema and the rest of them are located in the stopband. 

Further equalization of extrema values could be performed by 

applying the proposed procedure of zones width modification. 
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Fig. 4. The ideal phase, phase and phase error of the initial solutions for all-

pass filters of order N=6 and N=10 

 

 Now, parameter ∆, defined as the total area dedicated for 

correction of zone’s width in the first iteration, has value  

 

 0 1C
N C


 =  

+
 (23) 

  

The numerous experiments have shown that good choice of 

parameter C is a value near unity for low order filters and 

decreased values toward zero for high order filters.  

Through iterations the absolute values of phase error extrema 

i  in all zones are determined and correction is performed 

according to earlier described procedure. The results show that 

already after four iterations, the extrema on the phase error 

curve are approximately equal which ensures quasi-equirrple 

phase error characteristic. The main goal of the initial solution 

is to ensure an adequate number of phase error extrema. 

Obtained results for filter of order N=10 are displayed in Figs. 

5 and 7, and for filter of order N=6 are displayed in Figs. 6 and 

8. Good choice of starting zone’s width values helps to reach 

quasi-equiripple phase error in only four iterations. The values 

of maximum phase error in all zones are displayed in Figs. 7 

and 8 for all-pass filters of order N=10 and N=6, respectively. 

 
Fig. 5.  Phase error of the all-pass filter of order N=10 for the first four iterations 

 

 
Fig. 6.  Phase error of the all-pass filter of order N=6 for the first four iterations  

 
Fig. 7.  Values of the phase error extrema of the all-pass filter of order N=10 

for the initial solution and first four iterations 

 
Fig. 8.  Values of the phase error extrema of the all-pass filter of order N=6 for 
the initial solution and first four iterations 

 

It is important to emphasize that in some filter design (for 

specific all-pass filter phase shape), it could happen that solving 

system of equations (17) with equidistant frequency points 

where the phase error have zero value, does not give stable 

filter. That was the reason to introduce unequal zone’s width.     
 

0 0.2 0.4 0.6 0.8 1

-30

-20

-10

0

Normalized frequency

P
h
a
s
e
 [
ra

d
]

 

 

Ideal linear N=6

All-pass N=6

Ideal linear N=10

All-pass N=10

0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

Normalized frequency

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

 

 

N=6

N=10

0 0.2 0.4 0.6 0.8 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Normalized frequency

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

 

 

Initial solution

After the 1st correction

After the 2nd correction

After the 3rd correction

After the 4th correction

0 0.2 0.4 0.6 0.8 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Normalized frequency

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

 

 

Initial solution

After the 1st correction

After the 2nd correction

After the 3rd correction

After the 4th correction

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

Iteration step

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

P
h
a
s
e
 e

rr
o
r 

[r
a
d
]

Iteration step

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 ELI1.4 - Page 5 of 6 ISBN 978-86-7466-970-9



 

C. Design of filter with quadratic phase characteristic 

Linear group delay i.e. the quadratic phase filters are used 

for expansion or compression of chirp signals in radar systems 

[8]. The area below the group delay of all-pass filter of second 

order is exactly 2π. If group delay is linear function of 

frequency one can expect the denser poles distribution in area 

with higher group delay. The normalized zone’s width is 

defined as (24) where R gives the ratio of the widest and 

narrowest zone. 

 

 
1

( 1) , 1, , 1i

i N
nzw R R i N

N

− −
= + −  = +  (24) 

 

The zone’s width could be obtained using equation (23). The 

impact of the assigned correction area in the first few iterations 

is shown in Fig. 9. Experiments have shown that choice 

N =  is appropriate regardless the filters order. The four 

iterations were enough to reach the good starting point for 

equiripple design. In the given example quadratic phase 
2A B +  was approximated where 1A = − and 

B N A = − −  . 

III. CONCLUSION 

We provide in this paper a procedure for determining of an 

improved initial solution for all-pass filter design. The vector 

of determined coefficients of the all-pass filter provides an 

appropriate number of the phase error extrema. The analyzed 

methodology ensures stable convergence and is not resctricted 

by the filter type. It is shown that constant, linear or quadratic 

phase characteristic could be achieved with the proposed 

iterative procedure.  

Numerous experiments of differentiators, lowpass filters and 

filters for pulse compression design confirmed the 

effectiveness of the described procedure. The speed of 

convergence toward Approach of determining to the quasi-

equiripple phase error solution is influenced by adopted area 

dedicated to the zone’s width correction.  

In general, the approach is based on the fact that expanding 

the width of the zone will cause the corresponding error 

extremum to increase. Similarly, shrinking of the zone will 

cause the phase error extremum to decrease. Hence, with the 

proposed method, a quasi-equirriple phase error can be 

obtained in a relatively small number of iterations without the 

need to determine the derivative of the objective function.  

The described procedure is efficient and can be used as 

starting point in design of high order filters. If at the very start 

an adequate value of area reserved for correction of the zone’s 

width is adopted, the described procedure successfully leads to 

equripple phase filter with no need for implementation of other 

methods. 

 

 
Fig. 9.  The impact of the assigned correction area on values of the phase error 

extrema for all-pass filter of order N=8 for the initial solution and first five 
iterations 
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