
 

  

Abstract— Graph-theoretic algorithms for nonparametric 

clustering represent an important approach to data clustering. 

The paper considers one such noniterative algorithm which 

behaves similar to valley-seeking algorithm but requires less 

computational efforts. Same as some other nonparametric 

approaches, it is suitable for clustering of irregularly shape 

clusters in different metric spaces. It results in unimodal sets 

(trees) and its applicability is not limited to low dimension 

problems. Although it is considered easy to use, since it is governed 

by a single scalar which determines the considered neighborhood, 

its performance is highly dependent on the choice of this control 

parameter and the distance metric itself. This paper explores the 

dependency of the control scalar from data dimensionality and 

number of samples and considers the possibility of giving 

recommendations for the choice of this parameter for a preset 

metric which is suitable for a given dataset.  

 
Index Terms—Clustering, Nonparametric clustering, Valley 

seeking clustering, Graph-theoretic algorithms.  

I. INTRODUCTION 

CLUSTERING analysis plays a critical role in various 

scientific and engineering domains, such as computer vision 

[1], bioinformatics [2], data mining [3], and many other 

machine learning disciplines. Its main goal is to group similar 

objects into clusters and there are two approaches to solving 

this task: parametric and nonparametric clustering.  

Parametric clustering assumes that the data is generated from 

a specific statistical model with a fixed number of parameters, 

and the clustering algorithm attempts to estimate these 

parameters. In contrast, nonparametric clustering makes fewer 

assumptions about the data distribution and can handle more 

complex data structures. They are usually based on distance or 

density measures and do not assume a specific model for the 

data. This flexibility makes nonparametric clustering methods 

particularly useful for clustering high-dimensional or noisy 

data. However, nonparametric methods can be computationally 

more intensive and may require more tuning of parameters. 

Valley seeking clustering is one of the oldest nonparametric 

clustering algorithms and it dates back to 1970s [4]. The main 

idea is simple and is based on identifying valleys in the sample 

density function of the data, and by moving away from the 

valleys it locates the cluster centers. Unlike many other 

clustering algorithms this approach does not need any prior 
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information about the number of clusters and is able to identify 

clusters of arbitrary shapes. 

Nonparametric valley seeking approach has been extensively 

studied in the literature in the past decades, and there are many 

variations of this method. Some studies have suggested using it 

in combination with other clustering techniques, such as k-

means to further refine its accuracy, while other studies tend to 

incorporate some prior knowledge about the data structure [5]. 

Graph-theoretic approach to valley seeking [6] is introduced as 

a way to reduce computational complexity of the algorithm. It 

is a noniterative procedure based on graph theory which results 

in unimodal sets or trees that represent specific clusters. 

One major issue with valley seeking approach to clustering 

is that it is heavily dependent on the choice of control parameter 

that dictates how big is the analyzed area around each sample. 

This paper explores how this control scalar affects the 

clustering results in several ways. First, the performance of the 

algorithm is tested for simple set of clusters when the number 

of samples in clusters changes. After that the algorithm is tested 

on three different scenarios when the control parameter 

changes. Finally, the possibility of adaptive approach for the 

choice of this parameter is analyzed and discussed. 

This paper is structured as follows. In Section II the 

theoretical background to the algorithm is described. Section 

III illustrates the experimental setup, while the results are 

shown in Section IV. The conclusion to the paper is written in 

Section V.  

II. THEORETICAL ANALYSIS 

A. Valley Seeking 

The valley seeking approach to clustering assumes that 

probability density function of the samples can be parametrized 

with peaks and valleys. Peaks represent centers of clusters, 

while valleys are the boundaries between them. The peaks are 

detected by observing the gradient of the probability density 

function and by moving the sample toward the direction of the 

gradient, thus ‘climbing’ away from the valley and towards the 

peak. Hence, two issues need to be addressed in order to 

successfully implement this procedure: how to estimate the 

gradient of the probability density function and how to use this 

information to form clusters. 
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There are many suggestions in the literature on how to 

estimate the gradient of the density function and following is 

the procedure suggested by Fukunaga [7]. In order to calculate 

the gradient at  𝑋 ∈ 𝑅𝑛 we will form a region Γ(𝑋) which has 

a radius of 𝑟: 

 

Γ(𝑋) = {𝑌: 𝑑(𝑌, 𝑋) ≤ 𝑟}, (1) 

 

where 𝑑(𝑌, 𝑋) is a distance measure 

 

𝑑2(𝑌, 𝑋) = (𝑌 − 𝑋)𝑇𝐴−1(𝑌 − 𝑋), (2) 

 

and the matrix 𝐴 is a metric used to measure the distance. 

Having defined this, we can introduce the expected vector 𝑌 

from the region Γ(𝑋) which is called the local mean, 𝑀𝐿, and 

is calculated as 

 

ML(𝑋) = 𝐸{(𝑌 − 𝑋)|Γ(𝑋)} = ∫ (𝑌 − 𝑋)
𝑓(𝑌)

𝑢0

𝑑𝑌
Γ(X)

. (3) 

 

Here 𝑓(⋅) is probability density function of the samples and 𝑢0 

is the probability that the sample 𝑌 is in the region Γ(𝑋) 

 

𝑢0 = ∫ 𝑓(𝑌)𝑑𝑌
Γ(𝑋)

≈ 𝑓(𝑋)𝑣, (4) 

 

where 𝑣 is the volume of Γ(𝑋). Now the function Γ(𝑋) can be 

expanded around 𝑋 in a Taylor series obtaining: 

 

𝑓(𝑌) ≈ 𝑓(𝑋) + (𝑌 − 𝑋)𝑇∇𝑓(𝑋). (5) 

 

Substituting eq. (4) and (5) into (3), as done in [7] an expression 

for normalized gradient is obtained: 

 

∇𝑓(𝑋)

𝑓(𝑋)
≈

𝑛 + 2

𝑟2
𝐴−1𝑀𝐿(𝑋). (6) 

 

The eq. (6) demonstrates how it is possible to obtain the 

gradient normalized by the probability density function. That 

has significant advantages to estimating the gradient itself, due 

to the fact that when the gradient is estimated in the valleys in 

which it has smaller value, the signal is amplified by dividing 

it with the probability density function which kas smaller 

values as well, and the normalized value is easier to estimate. 

After obtaining the normalized gradient, clustering is 

conducted by moving the samples in the direction 𝜌𝑀𝐿(𝑋), 

where 𝜌 is the step parameter. The idea is quite intuitive, but 

the implementation of the entire process is computationally 

expensive because after each step the entire data set is changed. 

For this reason, the non-iterative procedure based on graph 

theory is suggested. 

B. Graph Theoretic Approach 

Graph theoretic approach to valley seeking avoids iterative 

operation by forming trees in which each sample is a node. 

Each node initiates a branch pointing at another node which is 

called a predecessor. A series of these branches is called a 

directed path, keeping in mind that there is no direct path from 

a node to itself. At the top of the tree there is a final node which 

does not have a predecessor, and it is called the root of the tree. 

Every node, except the final node, has exactly one predecessor, 

and each node can be a predecessor of zero, one or multiple 

nodes. This structure is called a directed tree and the main idea 

is to determine a predecessor to each node as a node which is 

in the direction of the steepest gradient. 

It has been shown [7] that each node 𝑋𝑗 acquires its 

predecessor 𝑋𝑘 from the region Γ(𝑋𝑗) so that the following 

equation is satisfied  

 

𝑠𝑘𝑗 = max
𝑋𝑙∈Γ(𝑋𝑗)

𝑠𝑙𝑗 . (7) 

 

This means that the predecessor of 𝑋𝑗 is a node from the region 

Γ(𝑋𝑗) which has the steepest gradient to the node 𝑋𝑗. Here the 

steepness between nodes 𝑋𝑗 and 𝑋𝑙 is calculated as follows: 

 

𝑠𝑙𝑗 = ‖∇𝑓(𝑋𝑗)‖ cos(𝜃𝑙𝑗), (8) 

 

where 𝜃𝑙𝑗 is the angle between vectors ∇𝑓(𝑋𝑗) and (𝑋𝑙 − 𝑋𝑗). 

Seeing how vectors ∇𝑓(𝑋𝑗) and 𝑀𝐿(𝑋𝑗) have the same 

direction, and how ‖∇𝑓(𝑋𝑗)‖ is the same for all the nodes in 

the region Γ(𝑋𝑗), it is easy to conclude that the maximal 

steepness can be calculated as a minimal angle between vector 

𝑀𝐿(𝑋𝑗) and vector (𝑋𝑙 − 𝑋𝑗). 

Following the logic described previously, for each node 𝑋𝑗 

the maximal steepness 𝑠𝑘𝑗  is calculated, and one of the 

following rules is applied: 

1) If 𝑠𝑘𝑗 > 0: 𝑋𝑘 is a predecessor of 𝑋𝑗; 

2) If 𝑠𝑘𝑗 < 0: 𝑋𝑗 is a root of the tree; 

3) If 𝑠𝑘𝑗 = 0: form the set Π(𝑋𝑗) = {𝑋𝑘|𝑋𝑘 ∈ Γ(𝑋𝑗), 𝑠𝑘𝑗 = 0} 

and eliminate from the set all the nodes 𝑋𝑘 from which directed 

paths toward 𝑋𝑗 already exist. If resulting set Π(𝑋𝑗) is empty, 

then 𝑋𝑗 is a root of the tree. Otherwise, predecessor to 𝑋𝑗 is 𝑋𝑡 

such that 

 

‖𝑋𝑡 − 𝑋𝑗‖ = min
𝑋𝑘∈Π(𝑋𝑗)

‖𝑋𝑘 − 𝑋𝑗‖. (9) 

 

This way all the observations which have the common root 

of the tree correspond to the same cluster, and there are as many 

clusters as there are roots. 

III. EXPERIMENTAL SETUP 

Valley seeking algorithm with its implementation based on 

graph theory, as described in Section II, has many advantages. 

Most notably fast execution time (due to non-iterative nature of 

the implementation) and ability to detects clusters of irregular 

shapes in a high dimensional space (due to the nonparametric 

nature of valley seeking and the fact that no prior knowledge of 

the distribution is assumed). The greatest drawback, however, 
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Fig. 1. First (left), second (middle) and third (right) clustering scenarios. First cluster is shown in blue color, while second cluster is shown in red. 

 

is the fact that the performance of this algorithm is heavily 

dependent on the control variable 𝑟 from eq. (1) which dictates 

the area of the region which is considered when estimating the 

direction of the steepest ascent.  

The main idea is to explore the dependency of the control 

variable 𝑟 with respect to the number of samples and the shapes 

of the cluster and to consider recommendations for the choice 

of this parameter. Three different scenarios will be considered 

and, for easier visual representation, all three will be in 2-

dimensional space. The first scenario consists of two Gaussian 

clusters linearly separable (Fig. 1, left), the second consists of 

two nonlinearly separable moon shaped clusters (Fig. 1, 

middle) and the third scenario has one cluster completely 

immersed within the second ring shaped cluster (Fig. 1, right). 

Three experiments will be conducted, all of which will, for 

simplicity, adopt 𝐴 form eq. (2) to be a unit matrix: 

Experiment 1: For the first set of clusters use fixed control 

parameter, 𝑟, and change the number of samples within each 

cluster. 

Experiment 2: For all three sets of clusters from Fig. 1 change 

the value of the control parameter and analyze how the 

accuracy changes. 

Experiment 3: Suggest alternative for calculating control 

parameter and analyze the accuracy of clustering. 

IV. RESULTS 

A. Experiment 1 

This is an illustrative experiment which is used to test to what 

extent does the number of observations influence the accuracy 

of the algorithm for a fixed control parameter 𝑟. This has been 

tested on the first set of clusters (Fig. 1, left) with the value of 

𝑟 = 1 and 𝑟 = 2, for the number of samples in each cluster 𝑁 ∈
{10,20,40,80,150}. It is logical to assume that the greater the 

density of observations (ie. the more samples there are in each 

cluster) the bigger the accuracy. There is concern that too many 

samples in a given window can average out the peaks and the 

valleys so, theoretically, there should be the upper limit after 

which the increase of 𝑁 does not increase accuracy. 

The experiment is conducted such that for each pair of values 

𝑟 and 𝑁, 100 scenarios are generated with different samples, 

and an average of those is observed. The average number of 

clusters is given in Fig. 2 (up), while the percentage of time the 

algorithm has correctly detected that there are 2 clusters is 

given in Fig. 2 (down). Since the clusters are linearly separable, 

in all the cases in which the algorithm has detected 2 clusters, 

the classification is 100% accurate (i.e. each observation 

corresponds to the correct cluster). 

It is evident that for 𝑟 = 1 the accuracy of the algorithm is 

poor regardless of the number of observations which are 

generated. It somewhat improves as the parameter 𝑁 increases, 

but even for the highest value of 𝑁 tested, the algorithm 

converges to 2 clusters only 5% of the time. For 𝑟 = 2, on the 

other hand, the behavior of the algorithm is as expected. The 

accuracy increases as 𝑁 increases and, in these simulations at 

least, the upper bound to 𝑁 has not been determined. 

The results of this experiment corroborate the premise of the 

problem stated in this paper – the accuracy of the valley seeking 

clustering algorithm is highly dependent on the value of 𝑟, and 

for the values of 𝑟 that are poorly chosen, no amount of increase 

of samples can improve the algorithm. 

B. Experiment 2 

In this experiment all three clustering scenarios from Fig. 1 

were tested for a fixed number of observations, 𝑁, and variable 

control parameter, 𝑟. The number of samples in each cluster for 

the first and second scenario is the same, 𝑁 = 100, while in the 

third scenario, the cluster which corresponds to the larger area 

(blue one in Fig. 1) has 170 samples, while the one that 

corresponds to the smaller area has 70 samples. The 

experiment is tested for values 𝑟 ∈ {1,1.25,1.5,1.75,2} and an 

average result of 60 simulation per parameter per scenario is 

shown in Fig 3. 

As can be inferred from the first experiment, in the first 

scenario with linearly separable clusters, the higher the value 

of 𝑟, the better the clustering algorithm behaves. There is 

probably an upper limit after which this increase in 

performance stops, but it is not detected in the tested set of 

values. As for the second and the third scenario, they both tend 

to make large errors for 𝑟 ∈ {1,1.25} by detecting, on average, 

more than 2 clusters, and they tend to make large errors for 𝑟 ∈
{1.75,2} by detecting, on average, only one cluster. Here we 

can see that there is indeed an optimal value for the control 

parameter, and it is 𝑟 = 1.5. Also, the ring shaped scenario 

seems to be more challenging for valley seeking algorithm, as 

the accuracy tends to be higher for the moon shaped one for all 

values of 𝑟. 
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Fig. 2. Average number of clusters (up) and probability of correct 

classification (down) for different number of samples, based on 100 

simulations for the first clustering scenario. 

 

As can be inferred from the first experiment, in the first 

scenario with linearly separable clusters, the higher the value 

of 𝑟, the better the clustering algorithm behaves. There is 

probably an upper limit after which this increase in 

performance stops, but it is not detected in the tested set of 

values. As for the second and the third scenario, they both tend 

to make large errors for 𝑟 ∈ {1,1.25} by detecting, on average, 

more than 2 clusters, and they tend to make large errors for 𝑟 ∈
{1.75,2} by detecting, on average, only one cluster. Here we 

can see that there is indeed an optimal value for the control 

parameter, and it is 𝑟 = 1.5. Also, the ring shaped scenario 

seems to be more challenging for valley seeking algorithm, as 

the accuracy tends to be higher for the moon shaped one for all 

values of 𝑟. 

C. Experiment 3 

In this experiment we entertain the possibility of 

implementing adaptive control parameter 𝑟 which will grow 

larger as the number of samples in the region becomes sparse 

and grows smaller as the density of samples increases. One way 

to approach this issue is to aim to adjust the control parameter 

for each node, so that the number of samples in the region Γ(𝑋𝑗) 

remains constant. In this way, instead of predetermining the 

value of 𝑟, we need to adopt the value 𝑛 which represents the 

number of observations within Γ(𝑋𝑗). It is intuitively clear that 

the parameter 𝑛 should be proportional to the standard 

deviation of clusters and that it should in some way reflect the 

local statistics of the samples as well. Seeing how we already 

have a prior knowledge of the performance of valley seeking 

algorithm for different values of 𝑟 from the previous 

experiment, it can be concluded that for 𝑟 = 1.5 there is the  
 

 

 
Fig. 3. Average number of clusters (up) and probability of correct 

classification (down) for different values of control coefficient, based on 60 

simulations for each clustering scenario. 

 

best performance in second and third clustering scenario. For 

that value of 𝑟, on average, there are between 30 and 40 

samples in each region Γ(𝑋𝑗).  

Table I shows the results of adaptive step implementation 

when the number of samples in each gate is 𝑛 = 35 and 

comparison with the best results achieved in the previous 

experiment are given as well. The accuracy corresponds to the 

number of times clustering algorithm has correctly detected 2 

clusters, and as we can see, the adaptive choice of 𝑟 yields 

better results for all scenarios. 

The results seem promising; however, the choice of one 

parameter, 𝑟, is now substituted with the choice of another, 𝑛. 

Figure 4 shows how the performance of adaptive control 

parameter approach changes with 𝑛 and it is clear that even 

though the results are better than in experiment 2, the accuracy 

still deeply depends on the value of this parameter. 

 
TABLE I 

COMPARISON OF THE BEST RESULT FROM EXPERIMENT 2 WITH THE RESULTS 

OF EXPERIMENT 3 WITH PARAMETER 𝑛 = 35. 

 

Best results for experiment 2 – fixed 𝒓 

 Gauss Moon Ring 

𝑟 2 1.5 1.5 

Accuracy 0.8 0.5 0.4 

Results for experiment 3 – adaptive 𝒓 

 Gaus Moon Ring 

𝑟𝑚𝑖𝑛  0.76 0.97 0.46 

𝑟𝑚𝑎𝑥 4.48 2.68 2.15 

Accuracy 1 0.9 0.6 
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Fig. 4. Average number of clusters (up) and probability of correct 

classification (down) for different values of parameter 𝑛, based on 10 

simulations for each clustering scenario. 

 

V. CONCLUSION 

Valley seeking clustering is a well-established 

nonparametric method that can identify clusters of arbitrary 

shapes without prior knowledge about the number of clusters. 

However, the performance of the algorithm is highly dependent 

on the choice of control parameter which determines the size of 

analyzed area around each sample. 

This paper has explored how this control scalar affects the 

clustering results in various scenarios and proposed an adaptive 

approach for selecting this parameter. The results show that the 

proposed approach can improve the accuracy of valley seeking 

clustering and make it more robust to different data 

characteristics.  

In future work, the adaptive approach should be further 

refined, by stating clear rules for the change of control 

parameter or the choice of new parameter 𝑛. Furthermore, the 

application to other clustering algorithms should be explored. 

Overall, this study contributes to the understanding and 

improvement of nonparametric clustering methods, which can 

have important applications in data mining, machine learning, 

and pattern recognition. 
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