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Abstract—The paper provides algorithm testing for full 
automatic multi target tracking (initialization, maintenance and 
deletion) applied in a complex radar track-while-scan (TWS) 
system. The standard Sequential Monte Carlo (SMC) algorithm 
was applied with the Probability Hypothesis Density (PHD) 
filter. Heavy clutter together with moving targets is tested with 
two dynamic models constant velocity (CV) and coordinate  turn 
(CT) model). The measured robustness performance of multi 
targets tracking is used to adjust parameters and increase 
tracking stability in a dense clutter environment. The clutter 
density, number of random occurred targets, targets load during 
the maneuver and the target detection probability were varied. 
The results of OSPA metric distance and confirmed true tracks 
(CTT) are given in this paper.  

 
Index Terms—Sequential Monte Carlo, Particle PHD, multi 

targets tracking. 
 

I. INTRODUCTION 
The radar sensor measurements may either be a spurious 

(clutter) or a target measurement. The target existence and 
trajectory are not a priori known. Target measurements are 
only present in a scan with some probability of detection PD<1 
[1]. In a multi-target situation, the measurements may have 
also originated from one of various targets. Targets may enter 
and leave the surveillance region at any time, thus at any 
given moment the number of targets in the surveillance area is 
unknown. Automatic tracking in this environment initiates 
tracks using both target and clutter measurements. If a track 
follows a target, we call it a true track; otherwise we call it a 
false track [2]. To confirm likely tracks and terminate unlikely 
ones, a track quality measure is necessary. Some standard 
track quality measures include the probability of The tracks 
are initialized using measurements, thus both true tracks and 
false tracks simultaneously exist [3]. 

The multiple hypothesis tracker (MHT) [4] is one of the 
first widely used algorithm for target tracking in clutter. The 
measurement-oriented MHT, often known as the Reid 
algorithm [5], forms new tracks and measurement allocation 
hypotheses centered on global origin of measurements. The 
MHT uses statistical methods (track score) to discriminate 
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between false and true tracks. The probability of target 
existence obtained by utilizing Markov chain propagation 
models and Bayes update is used as the track quality measure 
in Integrated Probabilistic Data Association (IPDA) of [6] and 
Integrated Track Splitting (ITS).  

The state estimation problem of discrete-time stochastic 
systems with Markov switching parameters is the focus of 
interest in target tracking [7]. The Interacting Multiple Model 
(IMM) algorithm is a widely accepted algorithm for solving 
this problem, which is generally nonlinear. In the process of 
IMM algorithm, updating weights of models are derived from 
the mixture of probability density function (pdf) and 
probability masses. Many specific dynamic models of target 
motion have been developed for target tracking. The simplest 
model is constant-velocity (CV) models, or more precisely, 
“nearly-constant-velocity models”, which is a non-maneuver 
model [8].  

The random finite set (RFS) approach to multi-target 
tracking is an alternative association-based methods and 
comparative discussion between the RFS  approach and 
traditional multi target tracking methods has been given in [9], 
[10].  In the RFS formulation, the collection of individual 
targets is treated as a set-valued state, and the collection of 
individual observations is treated as a set-valued observation. 
Modeling set valued states and set-valued observations as 
RFSs allows the problem of dynamically estimating multiple 
targets in the presence of clutter and association uncertainty to 
be cast in a Bayesian filtering framework [11,12].  

. The first systematic treatment of multi-sensor multi-target 
filtering, as part of a unified framework for data fusion using 
random set theory was finite set statistics (FISST). The 
alternative to optimal multi-target filtering is the PHD filter 
[13,14, 15]. It is a recursion propagating the 1st moment, 
called the intensity function or PHD, associated with the 
multi-target posterior. 

This article proposes SMC implementations for both the 
Bayes multi-target filter and the PHD filter together with 
experimental results. 

Measurements and false alarms are also represented as 
random sets in the observation model. Mahler [16] employed 
the random set framework to propose a PHD filter. This 
method perform the data association between observations 
and objects and some implementations of PHD filter are 
proposed by using   SMC method [17, 18]. 

Alternative approach of the SMC is the Gaussian mixture, 
consisting of a weighted sum of Gaussian pdf, each with 
different means and covariance’s It is the natural form of the 
pdf of target state. Using such a structure, a mixture 
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component is created for every possible association, using 
every possible pairing of target and measurements with the 
mean and covariance calculated assuming that the particular 
hypothesis is true, and the weight calculated to represent the 
probability that the particular hypothesis is true.  

Rest of the paper is organized as follows. The problem 
statement and models is presented in Section II. Section III 
derives the SMC probability data association filter (SMC 
PHD) followed by the results of simulations, presented from 
Section IV. Concluding remarks will be given in Section V.  

II. PROBLEM STATEMENT 
Consider dynamic state estimation problem, in which the 

state varies with time. Preamble involves determining the 
existence and the trajectory of possible targets in the 
surveillance space, by comparing random measurements 
received by the sensor with the applicable stochastic models. 
We use superscripts   to denote tracks, and also targets 
followed by tracks.  

A. Targets model 
This model assumes that a target may exist and when it 

does it is always detectable with a given probability of 
detection PD, or it may not exist [19]. During the targets 
maneuvering, the motion can be changed at random times. 
The trajectory of a target can be described at any time by one 
of predefined dynamic models. A linear model is considered. 
The targets trajectory state, for the linear system, at time k, 
evolves by:  

 
  kkkk xFx  1   

where kF  is the propagation matrix, and the process  k  
noise is a zero mean and white Gaussian sequence with 
covariance. At each scan k, the sensor returns a random 
number of the random target and clutter measurements. The 
measurement of the existing and detectable target is taken 
with a probability of detection,. 

B. Measurements models 
Measurements may originate from the targets as well as 

from other objects. The clutter measurements follow the 
Poisson distribution. We assume that the uniform intensity of 
the Poisson process at point y in the measurement space, 
termed here the clutter measurement density and denote by 

( )y  is a priori known, or can be estimated using the sensor 
measurements. At time k, one sensor delivers a set of 
measurements denoted by kM

jjkk yy 1, }{  .  

Denote by kY   the sequence of selected measurement sets 
up to including time k,  },...,,...,,{ ,,1,

1
kMkjkk

kK yyyYY  .  

C. Sensors  model 
At each scan the sensor returns a random number of the 

random target measurements and a random number of the 

random clutter measurements. The measurement of the 
existing and detectable target is taken with a probability of 
detection PD is given by the following equation [20]:  

 k k ky Hx w       

where H is measurements matrix and the measurements 
noise 

kw   is zero mean and white Gaussian sequence with 
covariance matrix R [14]. 

III. GM  PHD FILTER DERIVATION 

A. Probability Hypothesis Density Filter 
The PHD of an RFS is the analog of the expectation of a 

random vector. The RFS   can be represented by a random 
counting measure Μ defined by [21] : 

 
}{)( SNoESM        (3) 

 
where the notation }{ZNoE denotes the number of elements 
in set of element Z. Assuming there are n targets in the multi 
target system, each having state s, the density p of M can 
be used to represent the RFS  [22]: 




 
n

i
iip

1
)()( XsX          (4) 

where )( ii Xs   denotes the Dirac delta function centered at 
X. The PHD is then the first moment of the above is: 
 

 )}({)( XX   pED        (5)  
 
The first moment density PHD has the form: 
 

  X XXX
kX

kk
kk dYkkfYD ))(()(      (6) 

 
The expected number of targets in region S is then: 
 


S

k
kko

kk dYDSkENEN XX )(})({     (7) 

The PHD filter recursion is given in [23] and [24]. The 
predicted PHD is 
 

XXXYYY dYDDbYD k
kkkkkk

k
kk )()()()( 1

1111
1 


    (8) 

where  
 

)()()()( 1111 XYXYXXY   kkkkkkkk bfdD          (9) 

 
and )(1 Ykkb is PHD of the spontaneous target birth, 

)(1 Xkkd  is probability of target survival, )(1 XYkkf  is 

transition probability density, )(1 XYkkb : PHD of the targets 
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spawned by existing targets.  Given the new scan of 

data },...,{ 1 m
k yyY  , the updated PHD is given by: 

 

)()(1()(

)()()(
)()()(

1
1











 

k
kkDk

YY kDkk

kDk
kk

YDPD

DPc
DPYD

k

XXYX

YXY
YXX

     (10) 

 
where 
 

 
 XXXYY dYDkfD k

kkk )(])[()( 1
1       (11) 

 

)(

)(])[(
)(

1
1

Y

XXY
YX

k

k
kk

k D

YDkf
D




       (12) 

and )(XDP is probability of detection, k is average number 
of false alarms per scan, assuming a Poisson distribution, 

)(Ykc is distribution of each of the false alarms, ])[( XYkf  is 
sensor likelihood function. At each time step, the PHD filter 
propagates not only the PHD, but also the expected number of 
targets. Consequently, estimation of the multitarget state is 
accomplished by searching for the }min{ kkN  largest peaks 
of )( k

kk YD X .  

 

B. Sequential Monte Carlo (SMC) Implementation of the 
Particle Probability Hypothesis Density Filter  
 
 SMC PHD algorithm is performed in next step: birth 
tagets Kalman prediction, spawned tagets Kalman prediction , 
update components and re sampling step. In this section, we 
describe the linear-Gaussian multiple target model and the 
recently developed Gaussian Mixture PHD filter. The 
multiple target models for the PHD recursion is described 
here. Each target follows a linear Gaussian dynamical model 
[25]: 
 

],;[ 1,1,1|   kklk QFxNp           (13) 

 
]),(;[)( kkk RxHyNxyg           (14) 

 
where N (.;m,P) denotes a Gaussian density with mean m and 
covariance P, Fk-1 is the state transition matrix, Qk-1 is the 
process noise covariance, Hk is the observation matrix and 
R(k) is the observation noise covariance. The survival and 
detection probabilities are state independent, 

kSkS pxp )(,    

and kDkD pxp ,, )(  . The intensities of the spontaneous birth 
and spawned targets are Gaussian mixtures [26]: 
 





)(

1
,,, ],;[)(

kJ

i

i
k

i
k

i
kk PmxNwx



      (15) 




 
)(

1
1,1,1.,1| ];[)(

kJ

j

j
k

j
k

j
k

j
kkk QdFxNwx



    (16) 

 
where ,,,, ,,,,

i
k

i
k

i
kk PmwJ 

 kJi ,,...,1   are given model 
parameters that determine the shape of the birth intensity, 
similarly, j

k
j
k

j
kk dFwJ 1,1,,, ,,,    and j

kQ 1,   kJj ,,...,1   
determine the shape of the spawning intensity of a target with 
previous state.  
 

The PHD derivation involves multiple integrals that have 
no computationally closed form solutions for the case where 
individual targets follow a linear Gaussian dynamic model. 
Particle filtering techniques permit recursive propagation of 
the full posterior [6] and have been used for near-optimal 
Bayesian filtering. Sequential SMC implementation of the 
Particle PHD filter was given from [18]. 
For any 0k  let )(

1,, },{ kL
ikikiw   denote a particle 

approximation of the PHD.  
The algorithm is designed such that the concentration of 

particles in a given region of the state space represents the 
expected number of targets in this region. We start with 

)1( kL  particles, which are predicted forward to time k. At 
time k, we generate additional )(kJ  new particles for 
exploring newborn targets. In the prediction step, we can get 
particle representation )()1(

1,1|, },{ kJkL
ikikkiw 
  . The update 

step maps the function with particle representation 
)()1(

1,1|, },{ kJkL
ikikkiw 
   into one with particle representation 

)()1(
1,|, },{ kJkL

ikikkiw 
  by modifying the weights of these 

particles. Note that when implementing the resampling step, 

the weights are not normalized to 1 but sum to kkN̂ , the 
expected number of targets at time k.  

Practical implementation of proposed algorithm, contain 
the procedure of the particle PHD filter is given as follows 
[27]. 
 
1) Step 1: Prediction Step 
 
For all )1(,...,1  kLi  we compute sample: 

],~[~
1,,

k

kikki Yq


    

and compute the predicted weights: 
 

1,
1,,

1,,
1|,

),~(

),~(~





  kik

kikik

kikik
kki w

Yq
w




      (17) 

 

For kJkLkLi  )1(,...,1)1(  sample ][~
,

k
kki Yp   

and compute the weights of newborn particles [28]: 
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kik
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kJ

w



        (18) 

 
where  
 

1|1|1|   kkkkkkk bfd        (19) 
 
with 1| kkd , 1| kkf and denoting 1| kkb  the same meaning as in 

previous equations kp and kq  are proposal densities and 

kb denotes the PHD of the spontaneous target birth [29]. 
 
 
2) Step 2 Update Step 
 

For each kYy  compute: 
 

1|,

)()1(

1

~)](~,[)( 




 kkj

kJkL

j
jkk wkyyC      (20) 

 
For )()1(,...,1 kJkLi   update weights: 
 

1|,
,

,
~]

)()(
]~,[

1[~



 

 kki
Yy kkk

kik
Dki w

yCyc
y

Pw
k 

    (21)  

 
where )(),(  yfPy kDk  . 
 
3) Step 3 Resampling step 
 
First, we compute the total mass by the [30]:  
 







)()1(

1

,~ˆ
kJkL

j
k

kk jwN        (22) 

and than, resample )()1(
1

, )}(~,
ˆ

~
{ kJkL

iikk
ki k

N

w 
   

 

to get   )()1(
1,

, },
ˆ

{ kJkL
ikikk

ki

N

w 
 . 

 
In this filter, since the PHD is obtained for a frame at each 

scan, there is no state-to-state correlation between consecutive 
scans. All the measurements (including target-originated and 
clutter-originated measurements) are used equally weighted in 
the update step [31], [32].  

This is not efficient for the use of the particles. Next, we 
introduce a track labeling technique combined with the PHD, 
so that we can use the information from the previous scan and 
choose better proposal densities and adjust the weights for the 
measurements accordingly in the update step.  
 Finally, mean and covariance are updated with the 
Kalman filter update equations,  

 
)]([)()( 1|1|| ymHyKymym j

kkk
j

k
j

kk
j

kk     (23) 

 

1|| ][  kk
j

kk
j

kk
j PHKIP       (24) 

 
1

1|1| ][ 
  kk

T
kk

j
kk

T
kk

jj
k RHPHHPK  (25) 

 

IV. RESULTS OF SIMULATIONS 
The GM PHD experiments was performed and  evaluated 

by 100 Monte Carlo (MC) runs over 2-dimensional test 
scenario. A target motion scenario (Fig.1) includes series of 
non-maneuvering and maneuvering flights modes.  

Two targets (red circles) move in a straight line at a 
constant speed of 25 [m/s] and then in 14 scans they make a 
maneuver with an angular speed of 0.15 [rad/s],  for a duration 
of 8 scans. Then they move again in a straight line 12 scans, 
so that the first target enters the maneuver with the same 
angular speed 17 scans into the second target 10 scans. At the 
end of the simulation, both wheels move in a straight line at a 
constant speed. Dimension of terrain surveillance is x=1000 
[m] and y=1000 [m]. Clutter (blue dots) is have uniform 
distribution with density  =2e-5 [1/m2].  

The sampling period of radar sensor is T=1s. Duration of 
the scenario is 60 scans. Very important aspects to the 
implementation of SMC PHD algorithm is the selection of the 
model structures and their parameters.  

The following two models, constant velocity (CV) model 
and constant acceleration (CT) model provide an adequate and 
self contained model set for tracking purposes. Hence, the 
model set for IMM filters has been selected as 
follows:M1=CV, M2=CT. Both models have the same state 
variables and this greatly simplifies the re-initialization 
operation of the IMM-GM-PHD filter. 

If The system input is modeled as follows:  
][ yyxxX   is vector state, ,x y are the Cartesian 

coordinates of the target position, ,x y   are the appropriate 
velocities. Transition matrix (FCV - constant velocity model 
and FCT- coordinate turn model) and process noise matrix are 
given by:  
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Fig. 1.  Two targets simulation scenario. 

 
Fig. 2.  Confirmed true tracks diagram. 
 

 
Fig. 3.  OSPA diagram for experimental scenario . 
 

Fig. 2. shows a diagram of the confirmed true tracks. It can be 
seen that effective tracking of maneuvering targets is possible 
under conditions of heavy clutter The diagram in Fig. 2. is a 
smallpox diagram.  
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V. CONCLUSION 
 In this paper, we present the concept of SMC PHD full 
automatic multiple targets tracking for radar system approach. 
The proposed algorithm is numerical tested and could be 
applied for modernization of a TWS radar in meter frequency 
range. The full automatic SMC PHD multi target tracking 
algorithm is tested and illustrated. A standard SMC PHD 
derivation is defined in a real radar resolution cell. Simulation 
results with two-dimensional scenario showed that the 
proposed algorithm ends up with better performance and less 
computational load than the standard PHD filter and with 
better performance than the traditional MHT/assignment 
algorithms. Also, SMC PHD derivation of all track status 
parameters is given.  
 Whole target tracking procedure is tested by the 
extensive simulation. Future research should better determine 
the association of radar received measurements with existing 
targets as well as automatic initialization of targets.  
 In the future, the theoretical constraints of the proposed 
tracking algorithm have been discussed in the case of crossing 
targets. It is anticipated that the problem of retaining the 
correct target identity in this scenario can be  resolved by 
considering the previous trajectories of targets. Results of 
simulation, given in the paper, show that the proposed 
algorithms has a good target tracking performance. 

. 
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