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Abstract – In this paper an estimator of the probability 

of detection of targets whose movement is monitored, 

as well as the density of false alarms in their immediate 

environment is proposed. Knowledge of these 

parameters is necessary for the successful application 

of any object tracking algorithm. Probability of target 

detection and density od false alarms are usually 

unknown quantities, and they are time-varying. The 

estimator is based on the maximum-likelihood 

approach. Since the movement of more than one target 

is observed in this paper, the estimator estimates the 

probability of detection for each target separately. 

Index Terms – Multi Target Tracking System, Probability 

of Target detection, Density of False Alarms  

I. Introduction 

The field of Multi target tracking began to develop in 

the sixties of the last century, and the expansion of 

efficient multi target tracking algorithms occurred after 

the invention of the Kalman filter [1]. The problem of 

object tracking boils down to the process of estimating 

the position, velocity, and acceleration of the object we 

are tracking in the presence of false alarms. A major 

challenge with such algorithms is the association of the 

obtained observations with detected targets. In that 

case, a certain matric is used to determine the 

association of each observation with the corresponding 

target, and then one of the single-target tracking 

algorithms is applied, usually the Kalman filter. 

Algorithms that have proven to be effective in solving the 

associated problems are the JPDAF (Joint Probabilistic 

Data Association Filter) [2] and MHT (Multiple 

Hypothesis Tracking) [3]. However, the effectiveness of 

all Multi-target tracking algorithms depends on knowing 

the probability od target detection and the density of 

false alarms. Since these parameters are often unknown, 

a new capture in research has opened, which is the 

estimation of the probability of target detection, as well 

as the estimation of the density of false alarms that occur 

in the observed space. The fact that the parameters of 

the probability od target detection and the density of 

false alarms are not stationary over time, significantly 

complicates their estimation. 

This paper proposes a new approach for estimating 

the time-varying probability of detection of multiple 

targets, as well as the density of false alarms. False 

alarms are not uniformly distributed throughout the 

space, so the immediate surrounding of the objects is 

always observed for the estimation of both parameters. 

In [4], an approach for estimating the probability of 

detection of a single target and the density of false 

alarms in its surroundings was proposed based on the 

maximum likelihood method, assuming that there is only 

one object of interest in the gate. This paper considers 

the case of tracking multiple targets whose trajectories 

are close enough that observations corresponding to 

different targets can appear in a single window function. 

This significantly complicates the process of estimating 

the desired parameters, as well as the data association 

process. It is important to note that the estimator of the 

probability of detection and the density of false alarms 

works completely independently of the object tracking 

algorithm, and therefore the estimator can be combined 

with a large number of algorithms. 

II. System Description 

The motion of two objects in environment where 

false alarms occur will be observed in this paper. Since 

the probability od target detection is always less than 
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one, their observations will not appear in each scan. 

However, due to existence of false alarms, the process of 

associating observations and tracking targets becomes 

complicated. Since knowledge of target detection 

probability and false alarm density is essential for quality 

target tracking, the idea presented in the paper is to 

implement an estimator that would estimate these 

parameters over time. The idea for the estimator is to be 

based on maximizing the joint likelihood functions of all 

hypotheses that can be posed. Unlike classical MHT 

approaches, the paper uses a reduced number of 

hypotheses, resulting in a computationally less 

demanding estimator. As it cannot be assumed that the 

false alarm distribution is uniform throughout the space, 

only the immediate vicinity of the detected objects will 

be observed. Rectangular window functions were used 

for this purpose. 

Figure 1 shows position predictions of the detected 

objects in the 𝑘-th scan. Window functions of 

corresponding dimensions are formd around the 

predictions, and since the target trajectories are very 

close, the gates around the target predictions overlap. 

The closer the targets are and the greater the overlap  of 

their window functions, the higher the probability that 

their observations will be found in the overlap, which 

further worsens the performance of the tracking 

algorithm, and the performance of the estimator is also 

expected to deteriorate. 

 

Figure 1 Illustration of window functions and observations in the k-th 
scan 

In [4], one object was observed, so it was possible to 

construct only one or the most two hypotheses 

depending on weather an observation appear inside the 

gate or not. In the case of tracking multiple objects, the 

situation is much more complicated. In scan 𝑘 shown in 

figure 1, three observations 𝑂1, 𝑂2 i 𝑂3 satisfied the 

boundaries of the previously formed window functions, 

with observation 𝑂1 located inside the gate of the first 

target; observation 𝑂3 located in the gate of second 

target, and observation 𝑂2 located in the intersection of 

those two gates. If all possible hypotheses were 

considered, there would be a total of eight in the case 

shown in figure 1. 

• Targets are not detected. 

• The first target is not detected, and observation 

𝑂2 is associated with the second target. 

• The first target is not detected, and observation 

𝑂3 is associated with the second target. 

• The second target is not detected, and 

observation 𝑂1 is associated with the first target. 

• The second target is not detected, and 

observation 𝑂2 is associated with the first target. 

• Both targets are detected. Observation 𝑂1 is 

associated with the first target, and observation 

𝑂2 is associated with the second target.  

• Both targets are detected. Observation 𝑂1 is 

associated with the first target, and observation 

𝑂3 is associated with the second target.  

• Both targets are detected. Observation 𝑂2 is 

associated with the first target, and observation 

𝑂3 is associated with the second target.  

As the likelihood of each hypothesis depends on the 

statistical distance between the target and the 

associated observation, it is obvious that hypotheses in 

which the closest observations are not assigned to the 

targets will have significantly lower likelihood. Therefore, 

such hypotheses will be eliminated at the outset. Instead 

of the initially proposed eight hypotheses in the case 

shown in figure 1, only four hypotheses are considered 

now: 

• Targets are not detected. 

• The first target is not detected. The observation 

that is statistically the closest is associated with 

the second target. 

• The second target is not detected. The 

observation that is statistically the closest is 

associated with the first target. 

• Both targets are detected. The observations that 

are statistically the closest are associated with 

them. 
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In fact, the number of proposed hypotheses can range 

from one to four depending on the number and 

arrangement of incoming observations.  

In order to propose hypotheses and define joint 

likelihood functions, the following notations will be 

adopted:  

• 𝑀1 – represents the total number of 

observations within the gate of the first object 

• 𝑀2 – represents the total number of 

observations within the gate of the second 

object 

• 𝑀12 – represents the total number of 

observations in the intersection of two gates 

The following are listed all the cases that may occur. 

Case 1) 𝑀1 = 0, 𝑀2 = 0, 𝑀12 = 0  

 

In this case, there is only one possible hypothesis which 

assumes that neither target has been detected. The 

likelihood function corresponding to this case is: 

𝐿(𝐻1
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗
𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

 

(1) 

Case 2) 𝑀1 > 0, 𝑀2 = 0, 𝑀12 = 0 

In the context of the second case, two hypotheses must 

be considered. 

a. The first target is detected. 

 

𝐿(𝐻2
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
∙ 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

 

(2) 

 

b. Targets are not detected. 

𝐿(𝐻2
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

(3) 

 

Case 3) 𝑀1 > 0, 𝑀2 > 0, 𝑀12 = 0 

In the context of the third case, four hypotheses must be 

considered. 

a. Both targets are detected. 

𝐿(𝐻3
𝑗
) = 𝑃𝑑1𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−2

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 2!

1

𝑉𝑔

𝑀𝑗−2 

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(4) 

 

b. The first target is detected. 

𝐿(𝐻3
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

(5) 

 

c. The second target is detected. 

𝐿(𝐻3
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(6) 

 

d. Targets are not detected. 

𝐿(𝐻3
𝑗
) = (1 − 𝑃𝑑1)(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗

𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 (7) 

 

Case 4) 𝑀1 = 0, 𝑀2 > 0, 𝑀12 = 0 

In the context of fourth case, two hypotheses are being 

considered. 

a. The second target is detected. 

𝐿(𝐻4
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(8) 
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b. Targets are not detected. 

𝐿(𝐻3
𝑗
) = (1 − 𝑃𝑑1)(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗

𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 (9) 

 

Case 5) 𝑀1 = 1, 𝑀2 = 1, 𝑀12 = 1 

As there is only one observation in the gate intersection 

in this case, its association with only the nearest target 

will be considered. 

a. We adopt the assumption that the target closest to 

the observation has been detected. There are two 

options for setting the likelihood function: 

𝐿(𝐻5
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

(10) 

 

Or 

𝐿(𝐻5
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(11) 

 

b. Targets are not detected. 

𝐿(𝐻5
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

(12) 

 

Case 6) 𝑀1 = 1, 𝑀2 > 1, 𝑀12 = 1 

In the context of sixth case, four hypotheses are being 

considered. 

a. Both targets are detected. The observation from the 

gate intersection assigned to the first target, while the 

nearest observation excluding the one from the 

intersection is assigned to the second target.  

 

(𝐻6
𝑗
) = 𝑃𝑑1𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−2

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 2!

1

𝑉𝑔

𝑀𝑗−2 

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(13)  

 

b. The first target is detected, while the second is not 

detected. 

𝐿(𝐻6
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

(14) 

 

c. The second target is detected, while the first is not. 

𝐿(𝐻6
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(15) 

 

d. Targets are not detected. 

𝐿(𝐻6
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗
𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

(16) 

Case 7) 𝑀1 > 1, 𝑀2 = 1, 𝑀12 = 1 

In the context of seventh case, four hypotheses are being 

considered. 

a. Both targets are detected. The observation from the 

gate intersection assigned to the second target, 

while the nearest observation excluding the one 

from the intersection is assigned to the first target. 

 

(𝐻7
𝑗
) = 𝑃𝑑1𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−2

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 2!

1

𝑉𝑔

𝑀𝑗−2 

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(17) 
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b. The first target is detected, while the second is not 

detected. 

𝐿(𝐻7
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

(18) 

c. The second target is detected, while the first is not. 

𝐿(𝐻7
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(19) 

 

d. Targets are not detected. 

𝐿(𝐻7
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗
𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

(20) 

 

Case 8) 𝑀1 > 1, 𝑀2 > 1, 𝑀12 ≥ 1 

In the context of the eighth case, four hypotheses are 

being considered. 

a. Both targets are detected. 

(𝐻8
𝑗
) = 𝑃𝑑1𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−2

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 2!
 

1

𝑉𝑔

𝑀𝑗−2

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(21) 

 

b. The first target is detected, while the second is not. 

 

𝐿(𝐻8
𝑗
) = 𝑃𝑑1(1 − 𝑃𝑑2)

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑋(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑥[𝑗|𝑗 − 1]|0.5
 

(22) 

 

c. The second target is detected, while the first is not. 

𝐿(𝐻8
𝑗
) = (1 − 𝑃𝑑1)𝑃𝑑2

(𝜆𝑉𝑔)
𝑀𝑗−1

𝑒−𝜆𝑉𝑔

𝑀𝑗 − 1!
 

1

𝑉𝑔

𝑀𝑗−1

𝑒−
𝑑𝑌(𝑗)2

2

(2𝜋)0.5𝑛|𝑆𝑌[𝑗|𝑗 − 1]|0.5
 

(23) 

 

d. Targets are not detected. 

𝐿(𝐻8
𝑗
) = (1 − 𝑃𝑑1)(1

− 𝑃𝑑2)
(𝜆𝑉𝑔)

𝑀𝑗𝑒−𝜆𝑉𝑔

𝑀𝑗!

1

𝑉𝑔

𝑀𝑗
 

(24) 

 

III. Proposal of algorithm 

Step 1: Define an integer variable 𝑁 which corresponds 

to the number of scans that will be considered in the 

experiment. After each scan, parameter estimates of  

𝑃𝑑1, 𝑃𝑑2 and 𝜆 will be performed.  

Step 2: After each scan, observations that satisfy the 

boundaries of pre-defined rectangular gate are selected. 

Based on positions of the observations, hypotheses are 

generated, of which there can be a maximum of 4. At the 

same time, the hypothesis matrix is updated.  

Step 3: Each column of the hypothesis matrix 

corresponds to one integral hypothesis. 𝑁ℎ is the total 

number of integral hypotheses. The complex likelihood 

function 𝐿(𝐻𝑖), 𝑖 = 1, … , 𝑁ℎ  of each integral hypothesis 

is calculated. The complex likelihood function in the 𝑘-th 

scan will be of the form: 

𝐿(𝐻𝑖) = (1 − 𝑃𝑑1)𝑁−∑ 𝑝𝑗(1

− 𝑃𝑑2)𝑁−∑ 𝑞𝑗𝑃𝑑1

∑ 𝑝𝑗𝑃𝑑2

∑ 𝑞𝑗  

(𝜆𝑓𝑎𝑉𝑔)
∑(𝑀𝑗−𝑝𝑗)

𝑒−𝑁𝜆𝑓𝑎𝑉𝑔

∏(𝑀𝑗 − 𝑝𝑗)!

1

𝑉𝑔
∑(𝑀𝑗−𝑝𝑗)

∙ 

(𝜆𝑓𝑎𝑉𝑔)
∑(𝑀𝑗−𝑞𝑗)

𝑒−𝑁𝜆𝑓𝑎𝑉𝑔

∏(𝑀𝑗 − 𝑞𝑗)!

1

𝑉𝑔
∑(𝑀𝑗−𝑞𝑗)

 

× ∏ 𝑓𝑋,𝑗(𝑍𝑗)𝑝𝑗 × ∏ 𝑓𝑌,𝑗(𝑍𝑗)𝑞𝑗  

(25) 

 

Where 𝑓𝑋,𝑗(∙) and 𝑓𝑌,𝑗(∙)  are the corresponding 

probability density functions, and 𝑍𝑗  is the observation 
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that is statistically closest to the assigned target. 𝑀𝑗 

represents the total number of observations within the 

boundaries of the first and second gates. 

In order to maximize this complex likelihood function 

with respect to the unknown parameters, the following 

equations need to be solved:  

𝜕𝐿(𝐻𝑖)

𝜕𝑃𝑑1
= 0,

𝜕𝐿(𝐻𝑖)

𝜕𝑃𝑑2
= 0 𝑖 

𝜕𝐿(𝐻𝑖)

𝜕𝜆𝑓𝑎
= 0 (26) 

 

After solving the previous equations, the following 

expressions are obtained: 

�̂�𝑑1 =
∑ 𝑝𝑗

𝑁
, �̂�𝑑2 =

∑ 𝑞𝑗

𝑁
, �̂�𝑓𝑎 =

∑(𝑀𝑗 − 𝑞𝑗)

𝑁𝑉𝑔
 (27) 

The previously mentioned expressions optimize the 

likelihood of each integral hypothesis. The values 

obtained using the aforementioned expressions are used 

to calculate the likelihood of each integral hypothesis.  

Step 4: Out of all optimal likelihoods, the highest one is 

selected, and based on it, the optimal parameters of the 

estimator 𝑃𝑑1, 𝑃𝑑2 i 𝜆𝑓𝑎 are determined. 

Step 5: As the number of integral hypotheses increases 

from scan to scan, it is necessary to reduce the number 

of hypotheses. For this purpose, the Branch and Bound 

algorithm [5] is used. 

It is assumed that the same assumptions as in the paper 

[4] apply.  

IV. Simulation results 

In order to demonstrate the performance of the 

proposed estimator, 1000 Monte Carlo simulations 

were conducted. One simulation consists of 𝑁 = 30 

consecutive scans. The motion of two objects with 

actual detection probabilities 𝑃𝑑1 = 0.95 and 𝑃𝑑2 =

0.75 was observed. The actual false alarm density was 

𝜆𝑓𝑎 = 10−5. Figure 2 shows the estimated detection 

probabilities of both targets.  

The variance of the obtained estimates is shown in 

Figure 3. It is expected that the variance increases as the 

actual target detection probability decreases. However, 

the variance values are high, especially for the second 

target with an actual detection probability of 𝑃𝑑2 =

0.75. Further research would involve correcting the 

proposed estimator to reduce the variance of the 

detection probability estimates. The estimate of the 

false alarm density is shown in Figure 4.  

Figure 2 Mean estimate of target detection probability 

Figure 3 Standard deviation of the obtained estimates from figure 2 

Figure 4 Mean estimate of false alarm density 
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