
 

  

Abstract—In this paper we present a separate rigorous 

analysis of the skin and proximity effects in an inhomogeneous 

conductor in the presence of a filament. The conductor consists 

of a massive central conductor coated with a thin layer of 

different conductivity. The skin and proximity solutions are 

assumed in the form of two infinite sums of the proper 

harmonics. The unknown coefficients in the skin effect case are 

found by applying boundary conditions, while a system of two 

integral equations is used to determine the unknown coefficients 

in the proximity effect solution, with no boundary conditions 

involved. 

 

Index Terms—skin effect, proximity effect, inhomogeneous 

conductor, filament, current distribution, integral equation 

I. INTRODUCTION 

There are very few cases where a solution for the current 

distribution of time-varying currents can be obtained in a 

closed form. These cases include some conductor 

configurations in the presence of a filament – massive circular 

conductor [1-3], thin tubular conductor [4,5], hollow massive 

conductor [2,6] and thin two-layer tubular conductor [7]. The 

method of integral equations proved to be very powerful in 

these cases, requiring no boundary conditions when the 

conductor is homogeneous. 

In this paper we investigate the skin and proximity effects 

in the case of a massive circular conductor covered by a thin 

layer, in the presence of a filament. Although the conductor is 

inhomogeneous, no boundary conditions are required when 

analyzing the proximity part of the problem. 

 

II. FORMULATION OF THE PROBLEM AND GENERAL FORM OF 

SOLUTION 

 

Geometry of the problem is shown in Fig. 1. An 

inhomogeneous conductor consisting of a massive conductor 

of radius a and conductivity σ1 coated with a thin layer of 

thickness d (d<<a), and conductivity σ2, and a filament carry 

equal opposite sinusoidal currents of rms I and frequency f. 

Distance between the conductor axis and the filament is D. 

The object is to find current distribution in the conductor. 
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Fig.1 Inhomogeneous conductor and filament 

 

The proper radial harmonics in cylindrical coordinates are 

modified Bessel functions In(kr) and Kn(kr) (k2 = j0), and 

the proper angular harmonics are trigonometrical functions 

cosn and sinn. Due to symmetry, the sine function must be 

excluded since the current density should be an even function 

of . In region 1, the Kn function should not be present since it 

is unbounded for r = 0. Hence, the general form of the 

solution for current density in region 1 is 
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In region 2, due to its small thickness, the radial 

dependence may be neglected, so that the general form of the 

solution in this region is 
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In (1) – (2), An and Bn are unknown coefficients that should 

be determined. 

It is convenient to treat separately the skin and proximity 

effects in this problem. The skin-effect solutions are 

represented by the first terms (n = 0) in (1) – (2), while the 

remaining infinite sums (n 1) account for proximity effect. 

 

2.1 Skin-effect solution 

As mentioned above, this solution is given by 

 

 ( ) ( )rkIArJ s
1001 =  (3) 

 

 ( ) .02 constBrJ s ==  (4) 

 

Equality of the tangential components of the electrical fields 

at the interface r = a requires that 
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The total current through the conductor is 
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where only the first terms (n = 0) from (1) – (2) should be 

taken, since 


=

2

0

1,0cos ndn . After integration, 
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From (5) – (6) we can find the unknown coefficients 
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and the skin- effect solution given by (3) – (4) and (7) – (8) is 

completed. 

 

2.2. Proximity-effect solution 

To find the unknown coefficients An and Bn (n  1) in the 

proximity effect solutions 
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we will use the method of integral equations. These equations 

for the case of two conductors (two regions of the 

inhomogeneous conductor) in the presence of a filament have 

the following form in cylindrical coordinates [8]. 
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In (11) – (12) K1 and K2 are some unknown constants. For 

our specific case we may take in (11) – (12) 

ddadSar =
2, in the integrals over S2. We may also 

take ar   in (12), and (11) – (12) become 
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Now, we substitute (9) – (10) into (13) – (14) to get 
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where we also used the expansion 
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In (15) – (16), Pn, Qn, Rn and Sn are integrals given by 
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Integral (18), with In(k1r’) replaced by Jn(jkr) (the Bessel 

function the first kind), was evaluated in [3]. Using the result 

and a simple interrelation between Jn and In we readily find 
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From (20) we find 
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In deriving (23) we used the following formula [9] 
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Integral (21) was evaluated in [7]. It is 
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The remaining integral given by (19) is evaluated in the 

Appendix. We here state the result 
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After substituting (22) – (23) and (25) – (26) into (15) – (16) 

we may equate the coefficients with nrn cos  in (15), and the 

coefficients with cosn in (16). This results in two equations 
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From (27) – (28), using also (24) we find the unknown 

coefficients 
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Therefore, the proximity-effect solution given by (9) – (10) 

and (29) – (30) is now complete. 

Finally, the total solution is obtained by summing the skin 

and proximity effect solutions. 

It is worth to notice that no boundary conditions are used is 

solving the proximity effect problem. But it can be seen by a 

simple inspection from (29) – (30) that the boundary 

condition for the tangential electric fields at the interface r = a 
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is satisfied. 

From the obtained results some special cases immediately 

follow: solid conductor and filament [1] – [3] (we let 02 =k  

in the expressions for 0,, nBA nn ), and thin tubular 

conductor and filament [4]-[5]. In the latter case we let 

01 →k  and use the small argument approximation [9] 
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III. CONCLUSION 

 

A rigorous analysis of the current distribution in a massive 

cylindrical conductor with a thin layer in the presence of a 

filament is presented in this paper. A solution is found in the 

two regions in the form of infinite sums of the proper 

harmonics, and the unknown coefficients are found from 

boundary conditions and from two integral equations. 
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APPENDIX 

In this Appendix we evaluate integral (19) 
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using (17) with 
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Only the term m = n should be kept the infinite sum, due to 

orthogonality of the cosine function, hence 
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Note that Sn(), given by (25), can also be derived from (21) 

and (A1). 
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